

Neils Bohr and Werner Heisenberg

Day 38:
Hidden Variables
Local Realism
EPR Thought Experiments

Up Next:
Testing Local Realism
Single-Photon Experiments
And see Readings and reading questions for ${ }_{1}$ HW

The Farmer and the Seeds

(a parable of scientific reasoning)

- A seed is a square with some dots on it.
- The farmer always plants 4 seeds in a group.

First Group:

- Farmer observes \# of sprouts each group produces.

Questions from this story:

Possible Schemes

1. Totally Random (???)
2. (Number that is even) $=2$ Sprouts
3. [(Sum of all Numbers) -3$] / 2=2$ Sprouts
4. How could we decide if any of these three schemes is the correct one?
5. If the farmer had to wait to plant more seeds, are there reasons we might in the meantime favor one scheme over another?
6. How do we know if we' ve figured out all the possible schemes?
7. Where did these schemes we' ve been discussing come from? (Note: This question is not about the elements of the schemes, but the decisions as to what elements to use and how to use them.)

COMPETING THEORIES

...constrained by observation

Summary

- Scientists "make up" theories to explain the evidence they see.
- These theories are constrained by experiment.
- We can' t always open up the seed and look inside. Have to make inferences from indirect evidence.
- A theory with a plausible mechanism is more convincing than a rote algorithm.
- The more different cases our theory works on, the more we believe it.
- But it could always be wrong...

This Week:

1. Longer readings (on D2L), different approach to homework.
2. Less calculations, more words.
3. Respond to reading questions (posted on the hoemwork).

Today:

1. Reminders of probability and Stern-Gerlach
2. Interpretations of repeated spin measurements (hidden variables).
3. Local Realism (an intuitive view of the universe).
4. Distant correlated measurements and what they imply about the nature of reality.

We always get one of two possible results: $\left|\uparrow_{X}\right\rangle$ or $\left|\downarrow_{X}\right\rangle$
With Analyzer 2 oriented at 90° to Analyzer 1, either result $\left|\uparrow_{X}\right\rangle$ or $\left|\downarrow_{X}\right\rangle$ is equally likely.

We can't predict ahead of time whether an atom will exit through the plus-channel or the minus-channel of Analyzer 2, only that there is a $50 / 50$ chance for either to occur.

What would be the expectation (average) value for m_{x} ? $\quad\left\langle m_{X}\right\rangle=$?

For continuous x
A) $-m_{B}$
B) $-1 / 2 m_{B}$
C) 0
D) $+1 / 2 \mathrm{~m}_{\mathrm{B}}$
E) $+m_{B}$
$\langle x\rangle=\int_{-\infty}^{+\infty} x \rho(x) d x$
For Discrete x
$\langle x\rangle=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right)$

What would be the expectation (average) value for m_{x} ?

$$
\begin{aligned}
\left\langle m_{X}\right\rangle & =P\left[\left|\uparrow_{X}\right\rangle\right]\left(+m_{B}\right)+P\left[\left|\downarrow_{X}\right\rangle\right]\left(-m_{B}\right) \\
& =(0.50)\left(+m_{B}\right)+(0.50)\left(-m_{B}\right)=0
\end{aligned}
$$

Interpretation One

An atom with a definite value of m_{z} also has a definite value of m_{x} but that value changes so rapidly that we can't predict it ahead of time.
(Remember, magnetic moments precess in the presence of a
 magnetic field.)

Other Interpretations?
A. ?
B.
C.
D. ...

Interpretation Two

An atom with a definite value of m_{z} also has a definite value of m_{x} but measuring m_{z} disturbs the value of m_{x} in some unpredictable way.

Interpretation Three

An atom with a definite value of m_{z} doesn't have a definite value of m_{x}. All we can say is that there is a 50% probability for either value to be found when we make the measurement.

Which interpretation sounds most reasonable to you?

A) Interpretation One: An atom with a definite value of m_{z} also has a definite value of m_{x}, but that value changes so rapidly that we can't predict it ahead of time.
B) Interpretation Two: An atom with a definite value of m_{z} also has a definite value of m_{x} but measuring m_{z} disturbs the value of m_{x} in some unpredictable way.
C) Interpretation Three: An atom with a definite value of m_{z} doesn't have a definite value of m_{x} until measured.
D) A \& B seem equally reasonable.
E) Something else...

Hidden Variables

By either of the first two interpretations, the value of m_{x} for an atom in the state $\left|\uparrow_{Z}\right\rangle$ would be called a hidden variable.

If m_{x} has some real value at any given moment in time that is unknown to us, then that variable is hidden:

- The value of m_{x} exists, but we can't predict ahead of time what we'll measure ("up" or "down").
- The objectively real value of m_{x} is unknown to us until we make an observation.

Classical Ignorance vs. Quantum Uncertainty

- Classical Experiment:
- Take a blue sock and a red sock
- Seal them up in identical boxes
- Mix up boxes
- Take them to opposite ends of galaxy
- Open just one box, and you know what color sock is in the other box.

Classical Ignorance vs. Quantum Uncertainty

- No one knew which color was in which box until the moment one of the boxes was opened.
- Opening the first box only revealed to us something that was real and already predetermined here on Earth.
- Quantum mechanics would say the "quantum socks" were in a superposition state of equal parts blue and red.

$$
\left\langle m_{x}\right\rangle=P\left[\left|\uparrow_{x}\right\rangle\right]\left(+m_{B}\right)+P\left[\left|\downarrow_{x}\right\rangle\right]\left(-m_{B}\right)
$$

- Opening just one box instantly forced both socks to assume definite (but always opposite) colors at random, even though the boxes are very far apart.
- Local Realism says that superposition state is a reflection of classical ignorance.

MAY 15, 1935

PHYSICAL REVIEW
VOLUME 47
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

> In a complete theory there is an element corresponding quantum mechanics is not complete or (2) these two to each element of reality. A sufficient condition for the reality of a physical quantities is the possibility of predicting of the problem of mave simultaneous reality. Consideration it with certainty, without disturbing the system. In quantum mechanics in the case of two physical quantities onsis of measurements made on another system that had previously interacted with it leads to the result that if described by non-commuting operators, the knowledge of one precludes the knowledge of the other. Then either (1) (1) is false then (2) is also false. One is thus led to conclude the description of reality given by the wave function in is not complete.

Albert Einstein believed that the properties of a physical system are objectively real - they exist whether we measure them or not.

Einstein, \underline{P} odolsky and $\underline{R o s e n}(\boldsymbol{E P R})$ believed in the reality of hidden variables not described by quantum mechanics.

What do they mean by complete?

Completeness

- Quantum mechanics doesn't predict what value of m_{x} will be measured, only the probability for a specific outcome.
- A theory that can't describe (predict) the value of a real (but unknown) physical quantity could be called incomplete.
- A Realist (hidden variable) interpretation would say that quantum mechanics is incomplete (Interpretations One \& Two).
- Interpretation Three says that m_{x} doesn't have a definite, real value - the value of m_{X} is indeterminate.
- Quantum mechanics is not necessarily incomplete if it doesn't describe the value of a physical quantity that doesn't have a definite value to begin with.

Locality

EPR make one other assumption, but is it really an assumption?

Suppose we have two physical systems, $1 \& 2$.

If $\mathbf{1} \& \mathbf{2}$ are physically separated from one another, locality assumes that a measurement performed on System 1 can't affect the outcome of a measurement performed on System 2, and vice-versa.

Local Realism

Put together a Realist perspective and the assumption of locality and we get an interpretation of quantum mechanics that we'll call Local Realism.

Local Realism says that hidden variables exist and that quantum mechanics is an incomplete description of reality.

Is this a question of science or philosophy?
How could we decide?

Can we devise an experiment to test whether the assumptions of Local Realism are correct?

Yes!! But first we have to learn about entanglement...

Entanglement

Suppose we have a source that produces pairs of atoms traveling in opposite directions, and having opposite spins:

Entanglement

Place two Stern-Gerlach analyzers to the left and right of the source, and oriented at the same angle.

Let $\left|\Psi_{12}\right\rangle$ represent the quantum state of both atoms $\mathbf{1} \& \mathbf{2}$.
How would we represent this?

If Atom 1 exits through the plus-channel of Analyzer 1, then Atom 2 will always exit through the minus-channel of Analyzer 2.

We can write this state as: $\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle$

- We can't predict what the result for each individual atom pair will be.
- $\underline{\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle}$ and $\underline{\left|\Psi_{12}\right\rangle=\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle}$ are both equally likely.
- Quantum mechanics says to describe the quantum state of each atom pair as a superposition of the two possible states:

$$
\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle^{*}
$$

- When we perform the measurement, we only get one of the two possible outcomes, each with a probability of $1 / 2$.
*NB: not normalized!

Entanglement

We measure at analyzer $1 \quad\left|\downarrow_{1}\right\rangle$
What is the wave function (state):
a) $\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle$
b) $\left|\Psi_{12}\right\rangle=\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle$
c) $\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle$
d) We can tell anythign

Experiment One

- Rotate the analyzers by any angle, as long as they're both pointing along the same direction.
- If we measure along the x-axis, the result is either

$$
\left|\Psi_{12}\right\rangle=\left|\uparrow_{1, X}\right\rangle\left|\downarrow_{2, X}\right\rangle \quad \text { or } \quad\left|\Psi_{12}\right\rangle=\left|\downarrow_{1, X}\right\rangle\left|\uparrow_{2, X}\right\rangle
$$

- If we measure along the z-axis, the result is either

$$
\left|\Psi_{12}\right\rangle=\left|\uparrow_{1, Z}\right\rangle\left|\downarrow_{2, Z}\right\rangle \quad \text { or } \quad\left|\Psi_{12}\right\rangle=\left|\downarrow_{1, Z}\right\rangle\left|\uparrow_{2, Z}\right\rangle
$$

- This is true no matter what angle we choose, as long as both analyzers point along the same direction.

Experiment One

- The results of Experiment One show that the measurements performed on Atom 1 and on Atom 2 are anti-correlated.
- Anti-correlated means that, whatever answer we get for Atom 1, we'll get the opposite answer for Atom 2, as long as we're asking the same question.
- Atom pairs in a correlated state $\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle$ are said to be entangled.

Note that $\left|\Psi_{12}\right\rangle \neq\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$!!

