Putting Local Realism to the Test

"We can't solve problems by using the same kind of thinking we used when we created them."

- Albert Einstein

Day 39:
Questions?
Up Next:
Revisit EPR-Argument
Readings!
Testing Local Realism
Finish Single-Photon Experiments
Single Photon
Wave-Particle Duality

Recently:

1. Hidden variables, locality, quantum interpretations.
2. Entanglement

Today:

1. Revisit the EPR argument.
2. Testing local realism
3. Single photon

What would be the expectation (average) value for m_{x} ?

$$
\begin{aligned}
\left\langle m_{X}\right\rangle & =P\left[\left|\uparrow_{X}\right\rangle\right]\left(+m_{B}\right)+P\left[\left|\downarrow_{X}\right\rangle\right]\left(-m_{B}\right) \\
& =(0.50)\left(+m_{B}\right)+(0.50)\left(-m_{B}\right)=0
\end{aligned}
$$

Classical Ignorance vs. Quantum Uncertainty

- Classical Experiment:
- Take a blue sock and a red sock
- Seal them up in identical boxes
- Mix up boxes
- Take them to opposite ends of galaxy
- Open just one box, and you know what color sock is in the other box.
- The math we use to describe this is that

Expectation $=0.5$ blue +0.5 red
$\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle$
Same math as spin up / down ... is the PHYSICS the same?

Which interpretation sounds most reasonable to you?

A) Interpretation One: An atom with a definite value of m_{z} also has a definite value of m_{x}, but that value changes so rapidly that we can't predict it ahead of time.
B) Interpretation Two: An atom with a definite value of m_{z} also has a definite value of m_{x} but measuring m_{z} disturbs the value of m_{x} in some unpredictable way.
C) Interpretation Three: An atom with a definite value of m_{z} doesn't have a definite value of m_{x} until measured.
D) A \& B seem equally reasonable.
E) Something else...

Experiment One

- The results of Experiment One show that the measurements performed on Atom 1 and on Atom 2 are anti-correlated.
- Anti-correlated means that, whatever answer we get for Atom 1, we'll get the opposite answer for Atom 2, as long as we're asking the same question.
- Atom pairs in a correlated state $\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle$ are said to be entangled.

- Analyzer 1 (watched by Albert) is placed 5 km to the left of the source.
- Analyzer 2 (watched by Niels) is placed 5 km plus one meter to the right of the source.
- Perform Experiment One, exactly as before.
- How is this experiment different from the first?

- Albert can tilt Analyzer 1 any way he wants, and Niels can do the same with Analyzer 2.
- When Analyzers 1 \& 2 are tilted at different angles, they sometimes get the same answer, sometimes different answers.
- But when they compare their data, whenever the analyzers were tilted at the same angle they got opposite answers.
- The measurements are still 100% anti-correlated.
$\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle$

- Analyzers $\mathbf{1} \& 2$ are set at the same angle and Albert measures the spin of Atom 1 first. He observes $\left|\uparrow_{1}\right\rangle$.
- Albert knows what the result of Niels' measurement will be before Atom 2 reaches Analyzer 2. [And Niels knows he knows it.]
 outcome of Niels' measurement! Niels observes $\left|\downarrow_{2}\right\rangle$, and that must have been the state of Atom $\mathbf{2}$ all along.

- In other words, if Albert can predict with 100% certainty that Niels will observe $\left|\downarrow_{2}\right\rangle$ before he performs the measurement, then $\left|\downarrow_{2}\right\rangle$ must have been the real, definite state of Atom 2 at the moment the atom pair was produced.
- Local Realism says the atom pair was produced in the state

$$
\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle
$$

and the measurements revealed this unknown reality to us.

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

Abstract

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system. In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one precludes the knowledge of the other. Then either (1) the description of reality given by the wave function in quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality. Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus led to conclude that the description of reality as given by a wave function is not complete.

Albert Einstein believed that the properties of a physical system are objectively real - they exist whether we measure them or not.
$\underline{\text { Einstein, }} \underline{\boldsymbol{P} o d o l s k y ~ a n d ~ R o s e n ~(E P R) ~ b e l i e v e d ~ i n ~ t h e ~ r e a l i t y ~ o f ~ h i d d e n ~}$ variables not described by quantum mechanics.

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?
N. Bohr, Institute for Theoretical Physics, University, Copenhagen
(Received July 13, 1935)

> It is shown that a certain "criterion of physical reality" formulated in a recent article with the above title by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity when it is applied to quantum phenomena. In this connection a viewpoint termed "complementarity" is explained from which quantum-mechanical description of physical phenomena would seem to fulfill, within its scope, all rational demands of completeness.

- The Copenhagen Interpretation says the atom pair was produced in the superposition state $\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle$
- Albert's measurement of $\left|\uparrow_{1}\right\rangle$ instantly collapses $\left|\Psi_{12}\right\rangle$ into the definite state $\left|\Psi_{12}\right\rangle=\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle$
- This collapse must be instantaneous, because there is no time for a signal to travel from 1 to 2.

Albert Einstein: God does not play dice with the universe.
Niels Bohr: Who are we to tell God how to act?

Niels Bohr and Albert Einstein together at the 1930 Solvay Conference.

Philosophy or Science?

Interpretations One \& Two involved hidden variables.
Interpretation Three said:
In general, the state of a quantum system is indeterminate until measured.

We can restate this as:
THE OUTCOME OF A QUANTUM EXPERIMENT CANNOT, IN
general, Be PREDICTED EXACTLY; ONLY THE PROBABILITIES OF THE VARIOUS OUTCOMES CAN BE FOUND.

Question: How comfortable are you with Interpretation Three (i.e. Finkelstein says Einstein is wrong and Bohr is right)?
A. Very comfortable
B. Getting comfortable, but still not totally convinced
C. On the fence, I can see arguments for both sides
D. No way, Finkelstein (and Bohr) are full of it
E. Don't have any idea which interpretation is right

Dealing with Hidden Variables

In 1964, J. S. Bell proves theoretically:

No local interpretation of quantum phenomena can reproduce all of the predictions of quantum mechanics.

THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables. These additional variables were to restore to the theory causality and locality [2]. In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is
In 1978, John Wheeler proposes delayed choice experiment to demonstrate Bell's theorem

In 1986, Alain Aspect, et al. performs set of single photon experiments

Bell's Theorem

There is a powerful general theorem by J. S. Bell that proves:
No local interpretation of quantum phenomena can reproduce all of the predictions of quantum mechanics.
[We can devise a realistic scheme that is non-local, but most scientists are uncomfortable with this kind of interpretation.]

Number of annual citations of "On the Einstein-Podolsky-Rosen Paradox"
J. S. Bell, Physics 1, 195 (1964)

Bell's Theorem

There is a more general theorem by J. S. Bell that proves:

No local interpretation of quantum phenomena can reproduce all of the predictions of quantum mechanics.

What happens when a single photon encounters a beamsplitter?
(A) Either reflected towards D-A (w/ 50\% probability) or transmitted towards D-B (w/ 50\% probability) at random.
(B) It's reflected \& transmitted towards both detectors.
(C) Science has no way of knowing.

Two possibilities:

1. Photons are reflected at the beamsplitter

Reflection: $|\Psi\rangle=|R\rangle$

$$
P_{\mathrm{R}}=0.50
$$

Reflection: $|\Psi\rangle=|R\rangle \quad$ Transmission: $|\Psi\rangle=|T\rangle$

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}|R\rangle+\frac{1}{\sqrt{2}}|T\rangle
$$

Interpretation

Statistical: Each photon is either reflected or transmitted at the beamsplitter (but not both). The superposition state represents our ignorance of its actual state.

Quantum Wave: Each photon is both reflected and transmitted. The superposition state represents the actual state of each photon after encountering the beamsplitter.

Copenhagen: We can't describe what we can't observe.
The superposition is the correct mathematical description of the possible measurement outcomes, but we can't ever know more than that.

"The result of [the detection] must be either the whole photon or nothing at all. Thus the photon must change suddenly from being partly in one beam and partly in the other to being entirely in one of the beams."
P. A. M. Dirac, The Principles of Quantum Mechanics (1930, p. 8)

Single Photon Source (1986)

- Calcium atoms are excited by a twophoton absorption process $\left(E_{K}=3.05 \mathrm{eV}\right)+\left(E_{D}=2.13 \mathrm{eV}\right)$.
- The excited state first decays by single photon emission ($E_{1}=2.25 \mathrm{eV}$).
- The lifetime of the intermediate state is $\tau \sim 5 \mathrm{~ns}$.
- High probability the second photon ($E_{2}=2.93 \mathrm{eV}$) is emitted within $t=2 \tau$

- BS1 is a beamsplitter

- BS1 is a beamsplitter
- Ma and Mb are mirrors

- BS 1 is a beamsplitter
- MA and MB are mirrors
- PM1, PMA \& PMB are photomultipliers

EXPERIMENT ONE

- BS1 is a beamsplitter
- MA and MB are mirrors
- PM1, PMA \& PMB are photomultipliers
- N1, NA, NB \& NC are counters recording photon detections

- Detection of first photon (V_{1}) is counted by N 1

EXPERIMENT ONE

- Detection of first photon (v_{1}) is counted by N_{1}
- A signal is sent to tell the other counters ($\mathrm{NA}, \mathrm{NB} \& \mathrm{Nc}$) to expect a second photon (V_{2}) within a time 2τ

If the second photon $\left(V_{2}\right)$ is detected in PMA, then it must have been...
(A) ...reflected at BS1.
(B) ...transmitted at BS1.
(C) ...either reflected or transmitted at BS1.
(D) Not enough information.

EXPERIMENT ONE

If the second photon $\left(V_{2}\right)$ is detected in PMA, then it must have been reflected at BS1.

PATH A

If the second photon $\left(v_{2}\right)$ is detected in PMB , then it must have been transmitted at BS 1 .

PATH B

EXPERIMENT ONE

If both PMA and PMB fire within $t=2 \tau$, then the coincidence counter (Nc) is triggered

Many photons...
...or classical wave-like behavior at the beamsplitter

ANTI-CORRELATION PARAMETER (α)

Want some kind of measure of how often PMA \& PMB are firing simultaneously (within $t=2 \tau$)

$$
\alpha \equiv \frac{P_{C}}{P_{A} \cdot P_{B}}
$$

- $P_{A}=\frac{N_{A}}{N_{1}}=$ probability for N_{A} to be triggered
- $P_{B}=\frac{N_{B}}{N_{1}}=$ probability for N_{B} to be triggered
- $P_{C}=\frac{N_{C}}{N_{1}}=\begin{gathered}\text { probability for coincidence counter (NC) } \\ \text { to be triggered }\end{gathered}$
(PMA \& PMB during $t=2 \tau$)

$$
\text { ANTI-CORRELATION PARAMETER } \alpha \equiv \frac{P_{C}}{P_{A} \cdot P_{B}}
$$

- If NA \& NB are being triggered randomly and independently, then $\alpha=1 \quad P_{C}=P_{A} \cdot P_{B}$
- If NA \& NB are being triggered separately (reflection or transmission) then $\alpha \geq 0$ $P_{C}=0$ when photons are detected by either PMA or PMB, but never both simultaneously
- If NA \& NB are being triggered together (reflection and transmission) then $\alpha \geq 1$ $P_{C}>P_{A} \cdot P_{B}$ means PMA \& PMB are firing together more often than random.

What do you expect for the experimental results?

Photons are detected in either PMA or PMB, but not both!! If photons are particles, why don't we always measure $\alpha=0$?

- Same setup as before, but now insert a second beamsplitter (BS2)

EXPERIMENT TWO

If the second photon $\left(v_{2}\right)$ is detected in PMA, then it must have been...
(A) ...reflected at BS1.
(B) ...transmitted at BS1.
(C) ...reflected and transmitted at BS 1 .
(D) Not enough information.

