physicscourses.colorado.edu/phys2150

Judah Levine

JILA S-460
Judah.Levine@colorado.edu 303 492-7785 (2-7785)

Monday, 2-4 pm
Also by appointment
Usually ok without an appointment

Is this your clicker?

- 4A A8 8062
- 4A B2 AB 53

Propagation of uncertainty - 1

$-y=a_{1} x_{1} \pm a_{2} x_{2} \pm \ldots \pm a_{n} x_{n}$

$$
\delta y=\sqrt{\left(a_{1} \delta x_{1}\right)^{2}+\left(a_{2} \delta x_{2}\right)^{2}+\cdots}
$$

$$
\mathrm{y}=\mathrm{ax}^{\mathrm{n}} \quad \frac{d y}{y}=n \frac{d x}{x} \quad d y=a n x^{n-1} d x
$$

$$
y=\frac{p q r}{x w Z}
$$

$$
\frac{\delta y}{y}=\sqrt{\left(\frac{\delta p}{p}\right)^{2}+\left(\frac{\delta q}{q}\right)^{2}+\left(\frac{\delta x}{x}\right)^{2}+\left(\frac{\delta w}{w}\right)^{2} \cdots}
$$

General Formula

$$
\begin{gathered}
q=q(x, y, z, \ldots) \\
\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \delta y\right)^{2}+\cdots}
\end{gathered}
$$

Assumes $\delta x, \delta y, \ldots$ are independent
General result: independent errors add in quadrature

Example (text, page 62)

- $x=200 \pm 2, y=50 \pm 2, z=20 \pm 1$
- $q=x+y-z=200+50-20=230$
- $\delta q=\sqrt{ }(4+4+1)=3$
- $q=5 x+10 y-20 z=1000+500-400=1100$
$\delta q=\sqrt{ }(25 \times 4+100 \times 4+400 \times 1)=30$

Example (text, page 62)

- $x=200 \pm 2, y=50 \pm 2, z=20 \pm 1$
- $q=x y / z=200 \times 50 / 20=500$
- $\delta x / x=2 / 200=0.01$
- $\delta y / y=2 / 50=0.04$
- $\delta z / \mathrm{z}=1 / 20=0.05$
- $\delta \mathrm{q} / \mathrm{q}=\sqrt{ }\left(10^{-4}+16 \times 10^{-4}+25 \times 10^{-4}\right)$
- $\delta q / q=\sqrt{ }\left(42 \times 10^{-4}\right)=0.065$
- $\delta q=0.065 \times 500=32.4$

Clicker Question

$-y=a_{1} x_{1} \pm a_{2} x_{2} \pm \ldots \pm a_{n} x_{n}$
$\mathrm{x}=100 \pm 2, \mathrm{y}=250 \pm 5, \mathrm{z}=50 \pm 1$
$\mathrm{q}=2 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z}=200+750-200$
$\delta q=$
A: 16
B: 5.5
C: 650
Answer is A

D: 25.5

A little more complicated

$\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \delta y\right)^{2}+\cdots}$
$x=12 \pm 2 \mathrm{y}=8 \pm 1$
$q=2 x^{2}+3 y^{3}=1824$
x contribution $=288$, uncertainty $=96,33 \%$
y contribution $=1536$, uncertainty $=576,38 \%$
$\delta q=584$, total uncertainty about 32%
Details on web in class notes

Systematic Errors

- Contributions to the uncertainty that are not improved by averaging
- Often called "Type B" errors in the literature
- Example: calibration of instruments
- Typically estimated by secondary measurements
- Systematic errors often vary slowly

Calibration Errors

- Compare measuring tool with a standard
- What are the uncertainties in this comparison measurement?
- How do I know that the standard is correct?
- This is a recursive problem
- traceability
- What does it mean for the ultimate standard to be wrong?

Reporting systematic errors

- Report separately:
$-\delta q_{\text {total }}=\delta \mathrm{q}_{\text {statistics }} \pm \delta \mathrm{q}_{\text {systematic }}$
- Combine in quadrature:
$-\delta q_{\text {total }}=\sqrt{ }\left(\delta q_{\text {stat }}{ }^{2}+\delta q_{\text {sys }}{ }^{2}\right)$
- Table of systematic errors
- Uncertainties of calibrations

Definition of the kilogram - 1

- Louis XVI in 1791, 1795, 1799
- Mass of 1 L of water at $4^{\circ} \mathrm{C}$
- Large systematic uncertainties
- "Kilogram of the Archives" (KA)
- Platinum "sponge"
- Measurement uncertainty about 2 mg $-2 \times 10^{-3} / 10^{3}=2 \times 10^{-6}$
- KA is effective legal definition at that time

Definition of the kilogram - 2

- Treaty of the meter - 1885
- International Prototype Kilogram (IPK)
- 90\% platinum, 10\% iridium
- Mass set equal to KA in 1880
- Uncertainty 0.015 mg
- Legal definition in 1889
- 6 official copies made at the same time
- Kept at the International Bureau of Weights and Measures near Paris
- www.bipm.org

The troubles - 1

- In $1939 \mathrm{~m}(\mathrm{KA})=\mathrm{m}(\mathrm{IPK})-0.43 \mathrm{mg}$
- What changed?
- In 1946 comparison of IPK with its official copies
- M(IPK) loses mass with respect to the 6 official copies

The troubles - 2

- Masses of official copies slowly increase because of a film of oil and dirt?
- Can be minimized but not eliminated
- Official washing procedure
- After washing, copies of the kilogram still disagree
- $50 \mu \mathrm{~g}$ in about a century
$-\delta \mathrm{m} / \mathrm{m}=50 \times 10^{-6} / 10^{3}=5 \times 10^{-8}$
- Cause is not known

Change in definition

- Definition in terms of fundamental constants: $\mathrm{e}, \mathrm{m}, \mathrm{N}_{\mathrm{a}}$
- Realization:
- Compare mg against magnetic force
- Measure sphere of known density and size
- Realization vs. practical metrology
- Prototype kilograms are not going to disappear

The Bottom Line

- Estimating and removing systematic errors is hard
- Much harder than random stuff
- Some sources are never known
- Estimation process has its own uncertainties
- Laboratory notebooks are very important
- It's an imperfect world

