physicscourses.colorado.edu/phys2150

Judah Levine **JILA S-460** Judah.Levine@colorado.edu 303 492-7785 (2-7785) Monday, 2-4 pm Also by appointment Usually ok without an appointment

Is this your clicker?

4A A8 80 62
4A B2 AB 53

Propagation of uncertainty - 1
•
$$y = a_1 x_1 \pm a_2 x_2 \pm \dots \pm a_n x_n$$

 $\delta y = \sqrt{(a_1 \delta x_1)^2 + (a_2 \delta x_2)^2 + \dots}$
 $y = a x^n$ $\frac{dy}{y} = n \frac{dx}{x}$ $dy = an x^{n-1} dx$
 $y = \frac{pqr}{xwz}$
 $\frac{\delta y}{y} = \sqrt{\left(\frac{\delta p}{p}\right)^2 + \left(\frac{\delta q}{q}\right)^2 + \left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta w}{w}\right)^2 \dots}$

Judah Levine, 2150L33

General Formula

 $q = q(x, y, z, \dots)$

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x}\delta x\right)^2 + \left(\frac{\partial q}{\partial y}\delta y\right)^2 + \cdots}$$

Assumes δx , δy , ... are independent

General result: independent errors add in quadrature

Example (text, page 62)

- $x = 200 \pm 2$, $y = 50 \pm 2$, $z = 20 \pm 1$
- q= x+y-z= 200+50-20= 230
- $\delta q = \sqrt{(4+4+1)} = 3$
- q = 5x + 10y 20z = 1000 + 500 400 = 1100
- $\delta q = \sqrt{(25 \times 4 + 100 \times 4 + 400 \times 1)} = 30$

Example (text, page 62)

- $x = 200 \pm 2$, $y = 50 \pm 2$, $z = 20 \pm 1$
- $q=xy/z = 200 \times 50/20 = 500$
- $\delta x/x = 2/200 = 0.01$
- $\delta y/y = 2/50 = 0.04$
- $\delta z/z = 1/20 = 0.05$
- $\delta q/q = \sqrt{(10^{-4} + 16 \times 10^{-4} + 25 \times 10^{-4})}$
- $\delta q/q = \sqrt{(42 \times 10^{-4})} = 0.065$
- $\delta q = 0.065 \times 500 = 32.4$

Clicker Question

•
$$y = a_1 x_1 \pm a_2 x_2 \pm \dots \pm a_n x_n$$

 $\delta y = \sqrt{(a_1 \delta x_1)^2 + (a_2 \delta x_2)^2 + \dots}$

x=100
$$\pm 2$$
, y=250 ± 5 , z= 50 ± 1
q= 2x + 3y - 4z=200+750-200
 δq =
A: 16
B: 5.5
C: 650
D: 25.5

Judah Levine, 2150L37

Answer is A

 $\sqrt{(16+225+16)}=16$

A little more complicated

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x}\delta x\right)^2 + \left(\frac{\partial q}{\partial y}\delta y\right)^2 + \cdots}$$

x=12±2 y=8±1

$$q = 2x^2 + 3y^3 = 1824$$

x contribution= 288, uncertainty= 96, 33% y contribution= 1536, uncertainty= 576, 38% δq= 584, total uncertainty about 32%

Details on web in class notes

Systematic Errors

- Contributions to the uncertainty that are not improved by averaging
- Often called "Type B" errors in the literature
- Example: calibration of instruments
 - Typically estimated by secondary measurements
- Systematic errors often vary slowly

Calibration Errors

- Compare measuring tool with a standard
- What are the uncertainties in this comparison measurement?
- How do I know that the standard is correct?
 - This is a recursive problem
 - traceability
 - What does it mean for the ultimate standard to be wrong?

Reporting systematic errors

Report separately:

 δq_{total} = δq_{statistics} ± δq_{systematic}

 Combine in quadrature:

 δq_{total} = √(δq_{stat}² + δq_{sys}²)

 Table of systematic errors

 Uncertainties of calibrations

Definition of the kilogram - 1

Louis XVI in 1791, 1795, 1799

- Mass of 1 L of water at 4° C
 - Large systematic uncertainties
- "Kilogram of the Archives" (KA)
 - Platinum "sponge"

Measurement uncertainty about 2 mg – 2×10⁻³/10³ = 2×10⁻⁶

 KA is effective legal definition at that time

Definition of the kilogram - 2

Treaty of the meter – 1885

- International Prototype Kilogram (IPK)
 - 90% platinum, 10% iridium
 - Mass set equal to KA in 1880
 - Uncertainty 0.015 mg
 - Legal definition in 1889
 - 6 official copies made at the same time
- Kept at the International Bureau of Weights and Measures near Paris
 - www.bipm.org

The troubles - 1

- In 1939 m(KA)= m(IPK) 0.43 mg
 What changed?
- In 1946 comparison of IPK with its official copies
 - M(IPK) loses mass with respect to the 6 official copies

The troubles - 2

- Masses of official copies slowly increase because of a film of oil and dirt?
 - Can be minimized but not eliminated
 - Official washing procedure
- After washing, copies of the kilogram still disagree
 - 50 µg in about a century
 - $-\delta m/m = 50 \times 10^{-6}/10^3 = 5 \times 10^{-8}$
 - Cause is not known

Change in definition

- Definition in terms of fundamental constants: e, m, N_a
- Realization:
 - Compare mg against magnetic force
 - Measure sphere of known density and size
- Realization vs. practical metrology
- Prototype kilograms are not going to disappear

The Bottom Line

- Estimating and removing systematic errors is hard
 - Much harder than random stuff
 - Some sources are never known
- Estimation process has its own uncertainties
- Laboratory notebooks are very important
- It's an imperfect world