3220 Exam 2 Cribsheet

$$
\text{Spin } \frac{1}{2}: |\pm\rangle_x = \frac{1}{\sqrt{2}}(|+ \rangle \pm |- \rangle) = \frac{1}{\sqrt{2}}\left(\frac{1}{\pm 1}\right), |\pm\rangle_y = \frac{1}{\sqrt{2}}(|+ \rangle \pm i |- \rangle) = \frac{1}{\sqrt{2}}\left(\frac{1}{\pm i}\right)
$$
\n
$$
S_x \doteq \frac{\hbar}{2}\left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right), S_y \doteq \frac{\hbar}{2}\left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix}\right), S_z \doteq \frac{\hbar}{2}\left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix}\right), S_n \doteq \frac{\hbar}{2}\left(\begin{matrix} \cos\theta & \sin\theta e^{-i\phi} \\ \sin\theta e^{i\phi} & -\cos\theta \end{matrix}\right),
$$
\n
$$
S^2 \doteq \frac{3\hbar^2}{4}\left(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}\right). \text{ Eigenvectors of } S_n \text{ are } |+ \rangle_n \doteq \left(\begin{matrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} e^{i\phi} \end{matrix}\right), |\ - \rangle_n \doteq \left(\begin{matrix} \sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2} e^{i\phi} \end{matrix}\right).
$$

Spin 1 systems:

\n
$$
|1\rangle_{x} = \frac{1}{2}|1\rangle + \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{2}| - 1\rangle, \qquad |1\rangle_{y} = \frac{1}{2}|1\rangle + \frac{i}{\sqrt{2}}|0\rangle - \frac{1}{2}| - 1\rangle
$$
\n
$$
|0\rangle_{x} = \frac{1}{\sqrt{2}}|1\rangle - \frac{1}{\sqrt{2}}| - 1\rangle, \qquad |0\rangle_{y} = \frac{1}{\sqrt{2}}|1\rangle + \frac{1}{\sqrt{2}}| - 1\rangle, \qquad |0\rangle_{x} = \frac{1}{\sqrt{2}}|1\rangle + \frac{1}{\sqrt{2}}| - 1\rangle, \qquad |0\rangle_{y} = \frac{1}{\sqrt{2}}|1\rangle - \frac{i}{\sqrt{2}}|0\rangle - \frac{1}{2}| - 1\rangle
$$
\n
$$
\hat{S}_{x} \doteq \frac{\hbar}{\sqrt{2}}\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \hat{S}_{y} \doteq \frac{\hbar}{\sqrt{2}}\begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \qquad \hat{S}_{z} \doteq \hbar\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}
$$

Postulate #4: If you make a quantum measurement on state $|\psi\rangle$ of an operator A the probability of getting one of its eigenvalues a_n as your outcome is $|\langle a_n | \psi \rangle|^2$

Postulate #5: If you make a quantum measurement on state $|\psi\rangle$ of an operator A and get one of its eigenvalues a_n as your outcome, then you "collapse" into state:

$$
|\psi_{new}\rangle = \frac{P_{a_n}|\psi\rangle}{\sqrt{\langle \psi | P_{a_n} | \psi \rangle}},
$$
 where P_{a_n} (the "projection operator into state a_n ") is defined as:

$$
P_{a_n} = |a_n\rangle\langle a_n|
$$

Completeness (or "closure") says $\sum_n P_{a_n} = 1$: , or in continuous basis $\int |a\rangle\langle a| \, da = 1$ Quantum expectation value $\langle A \rangle = \langle \psi | A | \psi \rangle = \sum_n a_n \text{Prob}(a_n)$ Quantum uncertainty: $\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$ QM uncertainty principle: ΔA Δ $B \geq \frac{1}{2}$ |{[A, B]

Postulate #6: $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \widehat{H}(t) |\psi(t)\rangle$ (The time-dependent Schrödinger Eqn) Solution if H is time independent: $|\psi(t)\rangle = \ \sum_n c_n e^{-\frac{iE_n t}{\hbar}}\,|E_n\>$

Spin commutation relations: $[S_x, S_y] = i\hbar S_z$ **,** $[S_y, S_z] = i\hbar S_x$ **,** $[S_z, S_x] = i\hbar S_y$

Energy of a particle in a magnetic field: $H = -\mu \cdot B = -\frac{gq}{2m}S \cdot B$ (where g= gyromagnetic constant, it's about 2 for electrons with q=-e, and **S** is the spin operator…)

Rabi's Formula: For a particle spin up in a B-field oriented at angle θ from the z-axis in the x-z plane, i.e. $\vec{B} = B_0 \hat{z} + B_1 \hat{x}$, we define $\omega_{0(1)} = \frac{e}{m} B_{0(1)}$ and find energies $E_{\pm} = \pm \frac{\hbar}{2} \sqrt{\omega_0^2 + \omega_1^2}$

$$
\text{Prob(filipping + to -)} = \frac{\omega_1^2}{\omega_0^2 + \omega_1^2} \sin^2 \left(\frac{\sqrt{\omega_0^2 + \omega_1^2}}{2} t \right) = \sin^2 \theta \sin^2 \left(\frac{E_+ - E_-}{2\hbar} t \right)
$$

EPR maximally entangled wavefunction is $|\psi\rangle = \frac{1}{\sqrt{2}}(|+\rangle_1|-\rangle_2$ - $|-|-\rangle_1|+\rangle_2$), which you showed in homework is also $|\psi\rangle = \frac{1}{\sqrt{2}}(| + \rangle_{1n}| - \rangle_{2n}$ - $| - \rangle_{1n}| + \rangle_{2n}$) (I.e. this state is anticorrelated in any spin direction \hat{n} .)

Spatial wavefunctions and the position representation:

States: $|\psi\rangle \doteq \psi(x) = \langle x | \psi \rangle$ Bras: $\langle \psi | \doteq \psi^*(x) = \langle \psi | x \rangle$ Operators: $\hat{x} \doteq x$, $\hat{p} \doteq -i\hbar \frac{\partial}{\partial x}$ Brackets: $\langle \varphi | \psi \rangle = \int_{-\infty}^{\infty} \varphi^*(x) \overline{\psi(x)} dx$ Probability of finding a particle (a<x<b) = $\int_a^b |\psi(x)|^2 dx$
Expectation values in a state ψ : $\langle A \rangle = \int_{-\infty}^{\infty} \psi^*(x) \hat{A} \psi(x) dx$ Schrödinger's time-independent equation: $\left(-\frac{\hbar^2}{2m}\right)$ $\frac{\partial^2}{\partial x^2} + V(x) \partial \varphi_n(x) = E_n \varphi_n(x)$

Infinite Square well from 0 to a: Allowed energies $E_n = \frac{n^2 \pi^2 \hbar^2}{2 m a^2}$, with corresponding normalized energy eigenfunctions $\varphi_n(x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x)$