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Quantum Mechanics 
Website: www.colorado.edu/physics/phys3220 
 
For an overview and motivation (and a review of useful linear algebra terms, basic statistics, 
and complex numbers), please take a look at my separate “introductory notes”. 
I won’t cover all that in class, it will provide useful perspective and background!  
 
Q.M. is great fun: interesting, surprising, and sometimes rather weird and mysterious. 
Philosophers still argue about what it all means, but we will (mostly) take a "physicist's 
view”: that the single most essential aspect to learn Q.M. is to learn to calculate (accurate, 
correct, testable!) experimental outcomes. Issues of interpretation will certainly come too, as 
we go along! (How can we not talk about Schrodinger’s cat!?)  
 
Classical mechanics starts with this: given initial conditions of a particle (or system), 
compute r(t), position as a function of time. (Differentiating gives v(t), and thus momentum.) 
Quantum mechanics will also start with initial conditions, and make predictions about 
observables, but we will NOT start with “position and momentum” (we’ll get there soon!) 
There are other observables too, some more easily accessible to experiment, and easier to 
work with mathematically.  E.g. in the presence of a B- field, we can observe effects of the 
magnetic moment of an atom (or electron), a property associated with the circulation of 
charge (“current loops”). For a single electron, the circulation or “rotation” is called “spin”: 
the electron has a (measurable) spin. Measuring spin is in some ways analogous to measuring 
the angular momentum of a spinning top (although HOW we measure it is different in 
practice.)  
 
Spin is the first quantum property we are going to consider. It might not sound simpler than 
position (in freshman mechanics, angular momentum comes near the end and feels really 
difficult for most people!) but it turns out to be a great starting point to learn the essentials of 
QM.  Richard Feynman (Nobel-prize winning physicist who unified QM with relativity to 
construct the theory of QED, over 60 years ago) starts his famous freshman lectures on QM 
by considering what is in practice the simplest “quantum system” imaginable – a single 
spinning electron. I like the idea of starting with the simplest system when learning 
something new. (It’s sort of like starting classical mechanics with “point particles and no 
friction”, and then adding in complications bit by bit.)  
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Our starting point: the Stern-Gerlach exp’t:   
 
In 1922, Otto Stern and Walther Gerlach, two young assistants to Max Born, devised an 
experiment to test one of the earliest predictions of Bohr’s quantized model of angular 
momentum. Here’s the basic idea: Atoms are small magnets (because they consist of current 
loops). They have a magnetic moment vector  𝜇	 (whose magnitude, µ, tells you how strongly 
magnetic they are, and whose orientation aligns with the angular momentum of the 
circulating current) If you pass such atoms through a non-uniform B-field, there will be a 
force on the atoms proportional to a component of their (vector) magnetic moment. (I’ll 
derive this in a sec.)  If angular momentum is (classically!) a vector that can point in any 
direction, then the force will range continuously from a max to a min value (depending on 
the orientation of the atom) and thus the atoms will “smear out”, each feeling a different 
force. But if angular momentum is “quantized” (as Bohr had postulated), then the force will 
only take on certain discrete values, and the atoms will come out in one direction or another, 
but not in a “smear”.  Turns out their detailed predictions were wrong(!) The atoms they 
used (Silver) have a total of zero orbital angular momentum. (They didn’t know that in 1922, 
they thought the ground state had angular momentum L=1, and thus they expected THREE 
quantized orientations, so 3 output spots) With L=0, both quantum and classical predictions 
would predict NO smearing at all. But, they saw the beam split – into TWO spots! The result 
showed quantization, but was also surprising… and led (after a lot of argument) to the 
modern theory of Quantum Mechanics.  
 
Although it’s not completely essential to the quantum story to come, (I could just claim the 
final result and go from there) I want to derive the formula for the force on atoms in the 
Stern-Gerlach (S-G) device. It brings in a few key ideas from E&M and classical mechanics 
(CM), and is a quick review of some important (but possibly not so familiar) things.   
 
See McIntyre Fig 1.1 for a simplified view of a S-G apparatus. There is a B-field that points 
(mostly) in the z-direction, but is inhomogenous (spatially varying, it’s stronger lower down, 
and weaker higher up) Although the field is complicated, the main variation is also in the “z-
direction”, so the z- direction is special, it is singled out by this device. 
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In classical E&M, the potential energy (PE) of a magnetic moment sitting in a B field is 
given by 𝑈 = −𝜇 ∙ 𝐵 .  This is equation 6.34 in Griffith’s E&M book, it says that magnetic 
moments like to line up with B fields – compass needles align with the earth’s field!  
(The minus sign says PE is LOWER when µ aligns with B)  
 

Also in classical mechanics,  force 𝐹		 = 	 − 𝛻𝑈, where U means “potential energy”.  
Combining these, for atoms passing through the S-G device: 

𝐹		 = 	 + 𝛻𝜇 ∙ 𝐵 	≈ ,
,-
(𝜇-𝐵-)𝑧   

(That last step is approximate – the gradient has x-, y-, and z-components, but most spatial 
variation in the S-G setup is in the z-direction only, so I’m neglecting x- and y components)  
 
The magnitude of the magnetic moment is a property of the atom, it doesn’t vary with space, 
it’s the B-field that varies, so	𝐹- ≈ 𝜇-

,
,-
(𝐵-) is the dominant component  of the force. Thus, 

atoms are pushed “up or down” (in the z-direction) by this S-G. (And the z-component of 
their little magnetic momen vector decides by how much, and whether it is up or down)   
 
Since we oriented the S-G, we call it a “z- Stern-Gerlach”. You could always rotate it by 90 
degrees, so the gradient of B is in the x direction, and have an “x- Stern-Gerlach”. It’s trickier 
to rotate it to be a “y- Stern-Gerlach” (look at the picture, the poles get in the way of the 
beams!) but that’s a practical issue, not a theoretical one, and we are going to simply idealize 
these devices and freely talk of S-G’s that can be oriented in ANY spatial direction we want!  
 
Now, what’s the magnetic moment of a little atom? Griffiths defines magnet moment to be 
µ= IA = current*area. And of course current is merely “charge passing/time taken”.  
If the atom is built out of a charge q rotating in a circular orbit (radius r, velocity v) then  
 

I = q/(time per orbit) = q / (distance around/v) = q/(2 p r/v)  
The area here = p r2, so the p’s cancel, and we get:   µ= IA = qrv/2.  
 
Magnetic moment points in the direction of the angular moment,  
L = rxp.  Here, L = r*mv, so all together we have   𝜇 = 1

23
𝐿.  

 

This was a classical argument for a pointlike mass with charge q in orbit. If the charge was 
somehow “smeared out” spatially, and the mass was smeared out but differently, then we 
would expect the result to be similar but perhaps with a numerical “fudge factor” out front 
that takes into account the specific details of this smearing. If the object is e.g. a spinning 
globe of distributed charge, with “spin angular momentum” S, then we have argued that  
𝜇 = 𝑔 1

23
𝑆, where we stuck in the “gyromagnetic ratio” (or gyroscopic ratio) g, it’s just a 

number that accounts for the relative spatial spread of charge and mass.  
For point particles in orbit, g=1, as derived above.  

v 
q r 
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Dirac predicted for spinning electrons you would get g=2.  (For quarks in a proton, it has yet 
a different value, because they “smear out” differently)  For now the key thing is the 
proportionality of µ to spin, S. Since “q” = “-e” for electrons, we have as bottom line: 

	𝐹- ≈ −𝑔
𝑒
2𝑚𝑆-

𝜕
𝜕𝑧 (𝐵-) 

 
In McIntyre Fig 1.1, dBz/dz is negative (B gets weaker as you go up the page), so objects 
with positive Sz will feel an up force, and objects with negative Sz are pushed down.  
Of course, if our atom had a net charge, there would be another much bigger force – the good 
old magnetic F = qvxB force. That would dominate, and different speed atoms would move 
different amounts, really smearing everything up. So, we run neutral atoms through S-G’s (or 
build very clever and more complicated versions with e-fields and velocity selectors if you 
really want to run the experiment with just single electrons!)  
 
McIntyre jumps here to a claim about silver atoms which he attributes to “chemistry” (but is 
in fact a direct result of the quantum mechanics of atoms! To be covered next semester...) 
namely, that the electronic structure of silver is this horrible thing:  
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10   5s1 
Remember that notation? The big integers are a principle quantum number, “s, p, d” refer to 
orbital angular momentum (0, 1, or 2 respectively) and the small superscripts count HOW 
many electrons live in those particular orbits. So e.g. the 1s2 at the start says there are two 
inner-most electrons each in a “1s” state, which itself has no orbital angular momentum.  
Never mind the details – it’s all a big closed shell (total angular momentum and spin ZERO) 
with ONE lone 5s electron orbiting as the last bit - that means that final outermost electron is 
an “s-orbit”, or zero angular momentum. So the entire magnetic moment of the whole atom 
arises only from the SPIN of the last electron. It’s like we are experimenting on a single 
electron (except it’s neutral! So you can pass it through a B-field without it drifting away 
proportional to the atom’s speed, due to the Lorentz force) For this reason, although 
technically we’re working with silver atoms, I tend to think about the S-G device as a device 
measuring the spin of individual electrons, and will use that language henceforth.  
 
The outcome of the experiment was simple and historically surprising. Electrons (atoms) go 
up, or down, but nothing else. Since F is proportional to Sz, this says the z-component of spin 
is NOT a continuous variable (I would have classically expected Sz = |S|cosq, with q=the 
angle of the spin vector - basically ANYTHING, totally random if these things are thermal)  
 
Instead, we only get two possibilities, called “spin-up” or “spin-down”.  The size of the 
displacement tells you the magnitude of the spin, and that came out to be ℏ	/2, 
where ℏ= “Planck’s constant” = 1.05	 ∙ 10@AB	𝐽	𝑠𝑒𝑐 
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The first quantum surprise here is that the z-component of the spin of electrons is NOT a 
continuous variable dependent on the “angle” of the spinning electron.  
It is quantized, it comes in chunks, discrete possibilities. (Only two of them, here).  
 
The S-G device is called a “spin-analyzer”. Whether the particle goes up or down as it exits 
depends on whether our “measurement” of Sz gave us a result of  ±ℏ/2.    
So we sometimes say this device is “measuring spin” (although I’d argue you still need a 
detector to tell you if it went up or down to really be a measurement)   
 
Because of that factor of ½, we call electrons “spin-1/2 objects”. (Turns out there are other 
objects, not electrons, that are “spin-1”, or “spin-0”, or “spin-3/2”, etc.) A spin-1 particle run 
through a z-S-G device will come out in any of THREE beams. 
In general, spin n will produce 2n+1 beams in a S-G. (So all spin-0 objects go straight 
through – they aren’t magnetic!)  
 
FYI, the terminology is that “integer spin” objects are called “bosons”, and “half-integer 
spin” objects (like electrons) are fermions.  
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Let’s introduce a “quantum language” here – particles are described by their quantum state. 
Heading in to the S-G, you might have a random (or unknown) state. But after the z-S-G, you 
know if your particle is spin up (Sz = +ℏ/2), or spin down (Sz = −ℏ/2). We will call any 
state a “ket” (I’ll tell you why this strange name shortly), and give it a notation like this: 
 
|	𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔  
 
That “something” is our choice of a label to describe the state. For a spin-up electron, a 
natural label might be an up-arrow, or the VALUE of the spin (+ℏ/2) or just the SIGN of the 
spin (+). All of these are ways to remind ourselves of what we know – that the particle’s z-
component of spin was measured, and we know what it is!  Different people might write the 
“up” output state of a z-S-G (the ones that leaves heading upwards)  as | +	 ,  or maybe 
| + ℏ/2	 , or perhaps |𝑆- = +ℏ/2	 , or | ↑	 , or | +	 z   (where that little z at the end reminds 
me that we measured Sz).  They are all different names for the same thing.  
 
We often call some generic quantum state (“a ket”)  |𝜓	 .    
Why the word “ket”? Because in math a “bracket” is written like this:	    
Since the “ket” is the “right half” of that symbol, it’s a “ket’!   
Soon we will talk about the “left half”, namely 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔|,				and call that a “bra”.  
 
McIntyre has a nice “Stern-Gerlach” simulator code. It runs in java (which is becoming 
increasingly challenging to run on new machines) but it’s super-helpful. Take some time 
right now to try to get it running on your computer and play with it. Go to  
www.physics.oregonstate.edu/~mcintyre/ph425/spins 
You will have to battle with your browser’s “permissions” to run java, you can usually dig in 
and tell it that sims from http://www.physics.oregonstate.edu are safe. Believe in it, you can 
get it to work! (It will be helpful.) The PhET sim at 
https://phet.colorado.edu/en/simulation/stern-gerlach 
is ALSO java, and the sim is prettier but not as flexible. Try to get McIntyre’s working!  
 
Here is how McIntyre draws a z-S-G device;  
The oven is on the left, the incoming state is an 
unspecified |𝜓	 , the z-S-G is labeled “Z”, the output ports 
are labeled up and down, the outgoing states are labeled 
| ±	   Those bars at the right are counts – he has run 100 particles through the device, and 50 
went up and 50 went down. Apparently, this initial state had a random distribution of z-
components of spin. (Of course, if you run the sim, it may come out 52/48, or 47/53, etc… 
Each individual measurement is random, and so the final counts are like what you would get 
if you tossed a coin 100 times!)  
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As we move through the book, we’ll introduce the basic postulates of quantum mechanics.  
It may not be obvious that the S-G device contains “all of quantum mechanics”, but it does! 
That’s why it’s such a helpful way to start learning about QM. The postulates will be 
consistent with the outcomes of all possible S-G measurements, and in fact all measurements 
of OTHER observables in quantum systems too. So we start with:  
 
FIRST POSTULATE:  the state of any quantum mechanical system is represented 
symbolically by a “normalized ket”, |𝜓	  
 
There is nothing MORE known about a particle than what is represented in this state. The ket 
is not "the particle", or "the position of the particle", or “the spin of the particle”, it is merely 
a mathematical object which represents information about the particle.  
 
Compare/contrast this with a classical analogy, e.g. 		𝒓(𝒕) is not “the particle”, but it is “the 
position of the particle as a function of time”, and contains a lot of useful information about 
the particle – albeit not everything (what about mass, charge, spin, etc…?) For now, our 
quantum spin-1/2 kets ignore spatial information. We are choosing to inform ourselves about 
only one component of spin (since that’s all that matters for the particular S-G setup we’re 
focusing on right now.)  We’ll get back to “spatial” information in a couple of chapters!  
 
Since you can orient S-G devices at will, you can imagine lots of experiments that can (and 
have been) done. The outcomes of some will follow naturally from what we’ve already seen, 
but some will contain surprises. Try them out with the SPINS simulator to verify the claims. 
(Especially helpful if/when you shake your head and say “that surely can’t be how it turns 
out”. Remember, this is all experimental outcomes!) Interesting stuff happens when we chain 
S-G’s, so the output of one becomes the input of the next. Running a particle through a S-G 
“prepares” a quantum state: we can label it, we know what it is, we’ve measured it.  
 
McIntyre’s “Experiment #1” is shown in Fig 1.3 . It’s a chain of two “z-S-G’s”. The output 
of the + port of the first feeds into the second. Although the starting state was random (half 
the particles go out the – port of the first S-G) the ones coming out the first + port, have been 
measured to have Sz =+ℏ/2.   If you then run them through a second device, you get just 
what you would expect. These input particles are known to be in the state | +	 , and when you 
measure Sz on a particle in that state you always get +ℏ/2.  
 
No surprise here, no quantum weirdness at all. It’s nice to know that if you prepare a state, 
you know what you’ve got, and when you measure it again, that’s what you still have. 
Sounds like good physics to me. J   
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Experiment 2 (McIntyre Fig 1.4)  Now we chain a z-S-G with an x-S-G.  (Notice the “x” 
label on the second one - the 2nd S-G poles are rotated by 90o with respect to the first one.) 
We know the input state going into the second analyzer, it’s | +	 , which for emphasis I will 
write | +	 z.  What happens after the second analyzer? The experimental outcome is totally 
random, 50% go “up” (where up now refers to +x, not +z!) and the other half go down. Since 
we have now measured “x-component of spin”, I label the output from the second S-G as 
| ±	 x, that x-subscript emphasizes what I mean. It’s + or – in the x-direction  (Maybe I 
should call it “left or right” instead of “up or down”, but hopefully it’s clear what I mean.)  
 
This outcome is not weird. By measuring Sz, 1st, we were NOT measuring Sx. If the particles 
started out random, and we selected out only “spin-z component is up” ones, we haven’t (yet) 
selected out anything about x. The fact that they turn out random in x is not distressing or 
surprising, I’d say it’s expected! The “50/50” split now is just basic spin ½ physics– no 
matter WHAT direction you orienta S-G, if the input is random (with respect to that axis), the 
output comes out in only one of two states, “up” or “down” along the axis measured.   You 
could retry exp’t 2 using the “z-spin down” beam as input to the second x-SG. You’d get the 
same result. (Or retry it going into a “y-S-G”. Again, same result. ) 
 
One last comment, a hint of where we are going – this randomness is very deep. If you run 
ONE atom through the first S-G (and, say, it happens to come out the + port), then Exp’t 2 
tells me that the x-component of spin of this object is random. I cannot predict the outcome 
of one experiment on S-x. If I run many experiments, on average half end up +x, and half -x. 
But ONE experiment with a 50/50 chance is unpredictable. It is NOT the case that the atom 
“really has a particular x-spin component but we just don’t know it yet”. That would be 
merely a “lack of information”. It’s deeper than that. If you believed that were true, we could 
say there is a “local hidden variable”, hiding inside the atom, the outcome of the experiment 
is determined but you and I just don’t know it yet. That’s a reasonable and classical idea. If I 
flip a coin but don’t reveal it, we firmly (and reasonably) believe it HAS a “heads-or-tails” 
value, we just don’t know it yet. But this prepared spin ½ particle is different. It HAS NO 
VALUE of the x-component of spin until we measure it! That is weird, and you probably 
don’t want to believe me yet.  It’s hard to think about what it even means. But it is 
experimentally verifiable, and we shall see the evidence in Chapter 4.  For now, let’s leave 
this “interpretation” business be, we’re still investigating!   
 
To summarize: if I prepare a particle in state | +	 z, and then measure Sz (again), I DO know 
what the outcome will be (+), but if I instead choose to measure Sx, I do NOT know what the 
outcome will be. Knowing a state allows you to predict some experimental outcomes with 
certain, but for others you may only be able to predict probabilities (but not specific 
outcomes one at a time)  
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Experiment 3 (McIntyre p. 7) Now we chain three in a row: First Z, then X, then Z. The “+” 
output of each leads in to the next. Classically, I might say “I measure Sz, then I measure Sx, 
then I measure Sz again”. If you phrase it that way, then since the FIRST measurement of Sz 
gave us “+z”, you might expect the THIRD device (which is also “Z”) to give the SAME 
outcome. But it does not! After measuring Sx, (or phrased more carefully, after exiting an Sx 
analyzer from the + output port) the results of a subsequent Sz  measurement come out 50/50 
again. I suppose that too really is expected given our previous experiments. Just as particles 
with definite Sz come out 50/50 when later measuring Sx, so too particles with definite Sx 
come out 50/50 when later measuring Sz. The “weird” part is that we thought we know what 
Sz was (up), only to discover that the result had become randomized. My conclusion would 
be that measuring Sx impacts or affects the value of Sz. We say these 2 measurements are 
“incompatible”. You cannot know the value of both components of spin for a given particle 
at one time. If you most recently measured x, you no longer have any knowledge of z. You 
CAN NOT write down (or prepare) a state |+-	, +S  (that notation suggests knowledge of 
both x and z-components of spin) -  that would be meaningless and unphysical.  
 
So if I say a particle is “spin up”, I mean “the z-component of spin is known, it is +ℏ/2. I do 
not literally mean that the angular momentum points “straight up”, because the x (and y-) 
components are completely undetermined. So quantum mechanical spin doesn’t “point” in 
some clear physical direction. This is sometimes referred to as quantum fuzziness. Again, the 
state may be well known, the outcome of future experiments is predictable, but SOME 
experimental outcomes can only be described probabilistically.  
 
Experiment 4: (Figure 1.6)  There are 3 variations, all of them chains of 3 S-G’s. Setup 4a is 
the one I just described (Exp’t 3). It reiterates that point that if you measure Sx and find 
+ℏ/2, following that with a z-measurement gives you a 50/50 chance of getting + or -.  
Variant 4b is the same, but using particles that come out of the – port of the Sx analyzer, i.e. 
the state entering the final analyzer is | −	 x. Again, the outcome of the final measurement is 
50/50: if you know the “x-state”, you do not know the z-value you will get. No surprise here.  
Variant (c): What if you run BOTH output ports from the middle (X) analyzer back together? 
(Doing that in practice is subtle. But, with B-fields you can re-steer the beams together. How 
about building another X-SG and flipping it, mirror reversed, and sticking that just to the 
right of the middle analyzer, so that you simply “undo” what you just did to the particles?)  
 
If you are thinking classically, you would say “well, I’ve got particles coming in to the last Z 
analyser. Half came out the + port of the previous (X) analyzer, and ALL OF THOSE have a 
50/50 chance of exiting up or down.  (Proven by version a!) Half came out the – port of the 
previous analyzer, and ALL OF THOSE have a 50/50 chance of exiting up or down (Proven 
by version b!) So all together, shouldn’t we still see a 50/50 output? The answer (surprise!) is 
no, in this case all particles exit the last Z-analyzer in the same state they exited the first Z-
analyzer! (Here, spin up).   
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If you look at my physical description of how you “recombine” the beams you might get 
some physical insight into what happened. You undid the first X-analysis, so the “X-SG plus 
recombining” amounts to “do nothing at all”. Thus, if you start with Z-up, you end with Z-
up. This suggests that running particles through a S-G is not (yet) a “measurement”. It 
becomes a measurement if there is a way of saying “it definitely went out the upper (or 
lower) port”. The middle S-G in variant (c) is not measuring the x-component of spin.   
 
In the SPINS simulator, there’s a little button you can push that says “watch”. That would be 
equivalent to having variant (c) with a little counter next to the X-analyzer that says “this 
particle came out the + port” or “this one came out the – port”. If you do that, then you 
HAVE measured Sx, and you WILL get a 50/50 outcome after the last one, a totally different 
outcome! In QM, we have to be quite careful when we use the word “measurement”, this will 
come back to bite us if we are too casual about it.  
 
So Exp’t 4(c) has some “quantum weirdness”. Above, I suggested that running particles 
through an Sx analyser should randomize Sz, (because we said x- and z-measruements are 
incompatible) But the recombining of beams shows that the story is subtler than this. Here, 
we have NOT lost any of the initial information about Sz, even with that Sx device in the 
middle.  But it’s not that weird, you have seen something like this effect before, perhaps in 
Phys 1120, or in Phys 2170. If you shine light through ONE slit, it diffracts and lights up a 
whole screen. If you shine light through a DIFFERENT slit, offset from the first, it again 
diffracts and lights up a whole screen. If you shine light through BOTH slits simultaneously, 
you might think that you would get light from one slit, and add light from the other slight, 
and thus simply get MORE light everywhere on the screen. But you do not, instead you get 
bright regions and dark regions, interference patterns! This is NOT quantum mechanics, this 
is classical wave behavior. Interesting (but not weird). The idea that “combining results from 
two output ports” gives you something different than “what you would get from one alone, 
plus what you get from the other alone” might seem weird at first, but it is pretty standard 
“wave physics”. And that's what happens in Experiment 4(c).  This suggests there is some 
“wave physics” buried in our ket notation!  (Yes, indeed). We will say that the quantum 
states of | +	 x and | −	 x can be combined, and as a result can “interfere” with one another. 
In exp’t (c), the state entering the final analyzer is the “coherent superposition” of | +	 x + 
| −	 x , and that, just like a coherent superposition of waves, can give you interesting results!  
 
But I’m getting ahead of myself, we really need to talk about the math of kets a bit more 
before we can carefully figure out the details of what just happened.  
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Quantum states:  
I cannot tell you what a ket “is”. I can only tell you how it behaves mathematically, and how 
it can be used to predict experimental outcomes (probabilities of measurements). Kets are in 
some ways analogous to vectors. Since right now our spins are all coming out with “two 
possibilities” (spin-1/2 objects live in a 2-d space) let’s have a quick reminder of some 
properties of good old “2-d” vectors in the plane.  
 
All vectors can be formed as a linear combination of just TWO basis vectors. We get to 
choose the basis, we normally pick “orthogonal” and “normalized” basis vectors (𝚤  and 𝚥) 
Since you only need these two basis vectors to construct any other vector, we say this basis is 
complete. We might change basis (e.g. rotating), That would give a different basis, but still 
you only need two orthonormal basis vectors. Here’s the summary: 
  
    𝚤 ∙ 𝚤 	= 	 𝚥 ∙ 𝚥 = 	1			(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 
    𝚤 ∙ 𝚥 	= 𝚥 ∙ 𝚤 	= 	0			(𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑡𝑦) 
    𝐴𝑛𝑦	𝐴 = 	𝐴S𝚤 + 𝐴[𝚥			(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)           (McIntyre generalizes to x,y, z space)  
 
The components of A can be computed by using normalization and orthogonality: dot both 
sides of the completeness formula with 𝚤, for instance, and you find 𝐴S = 	 𝚤 	 ∙ 𝐴   (Stop, stare, 
think about that, make sense of it! We will use that “trick” in QM often)    
The “dot product” or “inner product” for 2-d vectors doesn’t care about ordering,  𝚤 	 ∙ 𝐴 =
	𝐴 	 ∙ 	 𝚤, which won’t be true for our generalization to QM.   
 
In QM, kets are in many ways like vectors. The vectors above live in a physical 2-d space. 
QM kets live in a more abstract “Hilbert” space (but I leave the details of that for your linear 
algebra course!) Much of what we do with kets can be understood by direct analogy to 
vectors. So e.g., in our spin-1/2 space, there are also only two basis kets. We get to choose 
them and usually we will choose the states | +	  and | −	  as our basis (Those are the “spin 
up” and “spin down” states from a Z-Stern Gerlach, we call this choice the Sz basis)  
Then, any general spin ½ quantum state can always be written 
   		|𝜓	 = 	a	| +	 				+ 						b	| −	 			(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠) 
“a” and “b” are numbers, they play the same role as the components Ax and Ay above.  
One big difference is that a and b can now be complex numbers. (I wouldn’t know what it 
means in regular space to have a complex component of a vector! But in Hilbert space that’s 
just what you have)  
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We still need to define a “dot product” (we’ll call it an inner product). If you have a ket  |𝜓 , 
I can define a corresponding bra which is written 𝜓|  ,  and is defined as  
		 𝜓| 		= 	 𝑎∗	 +| 					+ 				𝑏∗	 −|	 
NOTE! Those coefficients are the complex conjugates of a and b. I think of the bra as sort of 
like the complex conjugate of the ket.  
Now I can define an inner product of a bra and a ket, written as a bracket:   𝑏𝑟𝑎 𝑘𝑒𝑡   
NOTE! I can’t make sense of simply “multiplying” two bras, or two kets. The inner product 
is “bra on left, ket on right”.  
 
Since our basis states are normalized, and orthogonal, and complete, we have 
   + + =	 − − = 1			(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 
   + − = − + = 	0			(𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑡𝑦) 
   |𝜓	 = 	a	| +	 			+ 				b	| −	 						(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)        
Stare at those, compare with the corresponding relations for vectors, try to build a mental 
“analogy” for yourself. Just as an arbitrary vector is a linear combination of 𝚤  and 𝚥, so too an 
arbitrary spin ½ state (ket) is just a linear combination of the basis vectors | +	 	and	| −	    
 
Just as I was able to find the components of a vector, so too can I find those coefficients “a” 
and “b”. E.g, “dot” both sides of the completeness relation above on the left with bra +|.   
Try this for yourself, follow the steps!  
+ 𝜓 =	 +|	(			a	| +	 			+ 				b	| −	 )   

(Here I took the inner product with +| on both sides of the completeness relation above.  
I added parentheses to guide the eye, but now let’s get rid of them. Also, note that the inner 
product with a sum is the sum of the inner products, inner products “distribute”! So I have: 
+ 𝜓 =	 +|	a	| +	 			+ 				 +|	b	| −	  

Now, “a” and “b” are just numbers, they can be freely moved around a bracket, so this gives 
+ 𝜓 = 	a + + 	+ 				𝑏 + −  

The first term on the right has  a term  + + = 1, the 2nd has + − = 	0	(!), so I get 
+ 𝜓 = 	a. 

This is just like 𝚤 	 ∙ 𝐴 = 	𝐴S (again, stare at both until you see the analogy! You don’t want to 
have to go through these 3 lines of algebra every single time just to get the “components”)  
 
Try taking the inner product of the completeness relation with −|, and convince yourself  
− 𝜓 = 	b 
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Because of the above 2 results (the formulas to find “a” and “b”) , we can rewrite our 
“completeness” relation in a more formal (but also more general) way which will prove 
useful later: 
Any	|𝜓	 = 	 + 𝜓 		| +	 			+ 				 − 𝜓 	| −	 						(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠) 
 
This is the quantum version of saying  
	Any	𝐴 = 𝐴 ∙ 𝚤 	𝚤 + 𝐴 ∙ 𝚥 	𝚥							(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠) 
(Stare for a sec, so you see the connection/analogy)  
 
We can also “flip” the story for bras. Stating with 
 		 𝜓| 		= 	 𝑎∗	 +| 					+ 				𝑏∗	 −|    and forming the inner product on the RIGHT with | +	 , 
convince yourself you get 𝜓 + =	𝑎∗.  Note the complex conjugate!  
 
This is a big difference between kets and vectors, we used to have  
𝚤 	 ∙ 𝐴 = 	𝐴 	 ∙ 	 𝚤 = 𝐴S	 (order didn’t matter, components of vectors are real), but now 
+ 𝜓 = 	a, but		 𝜓 + = 	𝑎∗,	  the order in a bracket does matter, coefficients are complex. 

 
Indeed, this is a general rule: 𝜑 𝜓 =	 𝜓 𝜑 ∗  If you reverse the order of a bra and ket, you 
get the compex conjugate.  
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Our basis vectors are normalized, but in fact all physical kets representing quantum states 
should be normalized (look back at postulate #1!) This has a consequence for the two 
complex numbers “a” and “b” in arbitrary states:  if 		|𝜓	 = 	a	| +	 		+ 	b	| −	 , then 
normalization of y says  𝜓 𝜓 = 	1, which means  
𝑎∗ +| 					+ 				𝑏∗	 −| 				 a	| +	 		+ 	b	| −	 = 1     

(Sum of two bras on the left, inner product with sum of two kets on the right.  Multiply it out, 
there are 4 terms. Remember that complex numbers can be freely moved out of brackets: 
𝑎∗𝑎 + + 					+ 				𝑏∗𝑏	 − − 				+ 				𝑎∗𝑏 + − 					+ 				𝑏∗𝑎	 − + = 1 
Again, using normalization and orthogonality of the basis kills the “cross terms”, and we find 
𝑎∗𝑎					 + 				𝑏∗𝑏	 = 1, or 	 a 2 +	 	 b 2 = 1 
This mathematical relation, true for any state, has a direct physical interpretation (coming 
very soon!)  See McIntyre for an example, or here is another:  
Ex:  Suppose I want to normalize 		|𝜓	 = 	A(	3| +	 		+ 	4𝑒lm/B	| −	 ) 
The “A” out front is an unknown number, I want to choose it so y is normalized. 
Note that that 2nd coefficient is a complex number, written in polar form.  

So 1	 = 	 𝜓 𝜓 =	 𝐴∗ 3 +| +		4𝑒
nop
q −|	 	(A(	3| +	 		+ 	4𝑒

op
q 	| −	 ) 

Check for yourself! Forming the bra on the left, I complex conjugated all numbers: A, 3, and 
4𝑒lm/B. (The conjugate of 3 is 3, but the conjugate of 4𝑒lm/B	is	4𝑒@lm/B. )  
Multiply this all out, again there are 4 terms. Now let’s start skipping algebra. The two cross 
terms (with + − 	or − +  ) will contribute zero, and + + = − − = 	1, so I really only 
have two terms that contribute   
1	 = 	 𝜓 𝜓 = 		𝐴∗𝐴 3 ∗ 3 + 		4𝑒@lm/B4𝑒lm/B	 =	 𝐴∗𝐴 9 + 16 = 	25	 A 2 
From that, I conclude A = 1/5.  
(I could also add any complex phase to A I want, but I claim that overall phase of wave 
functions is not physically meaningful. We’ll see this in a homework problem – it arises from 
the postulate we are about to introduce)   
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Now we get to the big punchline, and the reason for all this new math. This is a postulate of 
Quantum Mechanics, and it is the way we physically interpret all this bra-ket stuff.  
The key postulate in QM (McIntyre will add in #2 and #3 shortly!) is: 
Postulate #4:  If you have a system in state |𝜓	  and you measure Sz, the probability that you 
measure one of the two possibilities is   Prob(measuring	 ± ℏ

2
) = 		 ± 𝜓 2 

(We can and will quickly generalize to other measurements, but this is the essence of QM) 
 
EXAMPLES:  if your state  		|𝜓	 = 		 | −	 , then 

 Prob(measuring + ℏ
2
) = 		 + 𝜓 2 = 	 + − 2 = 0 

That makes sense!  If you start in the | −	  state, we know for sure the measurement will 
yield −ℏ

2
, and there is zero chance of measuring +ℏ

2
! 

- If your state  		|𝜓	 = 		 | + , then 

 Prob(measuring + ℏ
2
) = 		 + 𝜓 2 = 	 + + 2 = 1 

That makes sense!  If you start in the | +	  state, we know for sure the measurement will 
yield +ℏ

2
, there is 100% chance of measuring +ℏ

2
.  

Note that we have just “explained” the outcome of Exp’t 1 using our new formalism… 
 
- If your state				|𝜓	 = 	a	| +	 		+ 	b	| −	 , then 

 Prob(measuring + ℏ
2
) = 		 + 𝜓 2 = 	 + 		(a	| +	 		+ 	b	| −	 ) 2 = 	 a 2   

(I had 2 terms to add and then square, but the 2nd one, the one with b in it, vanishes because 
+ − = 0	. Convince yourself!)    

Now I have a physical interpretation for a and b:  If you start in state 
 |𝜓	 = 	a| + + b| − ,  then 	 a 2  is the probability that you will measure “spin up”, and 
	 b 2  is the probability that you will measure “spin up”. That’s why normalizing states is 
required, so that 	 a 2 +	 	 b 2 = 1  (That’s the probability of either measuring spin up or spin 
down added together, which must be 1, because you have to measure one or the other) 
 
We call + 𝜓  (which here is “a”) the “probability amplitude” for measuring spin up. It is 
NOT the probability, you must absolute-value-square it to get the probability. It is a complex 
number. (This reminds me of E&M, where the intensity of a wave, with electric field 
amplitude E, is |E|2.   That’s where the language comes from)  
 
For our postulate, we put the “state we have” in the ket, and the “state we want to know the 
probability of measuring” in the bra. So we write probability amplitudes in the order 
𝑜𝑢𝑡	(𝑜𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)	𝑠𝑡𝑎𝑡𝑒		 	𝑖𝑛𝑝𝑢𝑡	𝑠𝑡𝑎𝑡𝑒    (and then square to get probability)  

But this order is just convention, since = 𝜑 𝜓 =	 𝜓 𝜑 ∗, and probability only cares about 
the absolute value squared, you could in principle swap the order. We just don’t. 
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Let’s continue looking at the 4 Experiments we started off with, and use this math.  
We already saw (previous page) that Exp’t 1 matches up nicely.  
 
In Exp’t 2, we used our first Z-SG spin up output port, and then sent those into an X-SG to  
measure Sx. We got 50% up (in x), 50% down (in x).   
Using postulate 4 (applied to x-measurements now!), I get 
Prob(measuring x up, starting with state z up) = 𝑜𝑢𝑡 𝑖𝑛 2 = 	 +S + 2 = 	 .5 
Prob(measuring x down, starting with state z up) = 𝑜𝑢𝑡 𝑖𝑛 2 = 	 −S + 2 = 	 .5 
Redoing exp’t 2 using the spin down output port of the first analyser, we would get  
Prob(measuring x up, starting with state z down) = 𝑜𝑢𝑡 𝑖𝑛 2 = 	 +S − 2 = 	 .5, and  
Prob(measuring x down, starting with state z down) = 𝑜𝑢𝑡 𝑖𝑛 2 = 	 −S − 2 = 	 .5 
I claim these (experimental!) results tell us what the |+S	  state is. Recall,  ANY quantum 
state can be written in the general form	a	| +	 		+ 	b	| −	 . So, 
|+S	 = 	a	| +	 		+ 	b	| −	  
|−S	 = 	c	| +	 		+ 	d	| −	  
Turn those into bras (remembering to conjugate a, b, c, and d!) and plug them into the 4 
experimental results above, to find e.g. from the very first one:  
+S + 2 = 	 .5 = 	 a 2   (Do it! There is another term involving b*<-|+>, but that vanishes by 

orthogonality of |-> and |+>) 
The other 3 equations above yield,  (in order!)  	 c 2 = 	 b 2 = 	 d 2 = .5	 (check for yourself) 
So I conclude a = c = 1/Sqrt[2].  You could put in any complex phase you want (square roots 
are ambiguous with respect to overall phase) but remember, overall phase of state vectors is 
not physically meaningful.   
But we DO have to be careful about the phases of the remaining two (b and d), because we 
can’t just decide all phases MUST be 0. (Only overall phase, not relative phase, is arbitrary) 
 
At this point I can only conclude from the above that 
 |+S	 = 	

�
2
	| +	 		+ 	 �

2
𝑒l�	| −	  

 |−S	 = 	
�
2
	| +	 		+ 	 �

2
𝑒l�	| −	  

There are still two undetermined phases, these 4 experiments found 4 probabilities, that’s not 
enough information yet to solve for everything. But we ALSO know that  |±S	  states are the 
basis states for the x-component of spin. So THEY should be orthogonal to each other too! 
That tells us +S −S = 0.  Work that out, using the states above. (Do it! Don’t forget to 
complex conjugate the phase in the bra):  
�
2

+| +		𝑒@l� −|	 	((	| +	 		+ 	𝑒l�| −	 )=0.   
 Using orthonormality (of the z-basis kets), the two cross terms vanish, and what’s left gives 
(1+𝑒@l��l�)=0.  This says a - b = p.  (or 3p, or 5p, etc) This is STILL not enough 
information to decide both a and b. The reason for that is really that “x” is merely defined so 
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far as “rotated by 90 degrees from z”. There are infinitely many different directions that 
satisfy this, any arrow in the x-y plane , and that ambiguity amounts to the ambiguity in a.  
We decide (by fiat) to define which of those to call “x” by choosing a =0. Thus b = p, and: 

|+S	 = 	
�
2
	| +	 +	 �

2
	| −	   

 |−S	 = 	
�
2
	| +	 	−	 �

2
	| −	  

All that complex number stuff just gave us a minus sign in the last term! Our 4 experiments 
(and some conventions) have given us the Sx basis kets, written in terms of Sz basis kets. 
You’ll use this many times. (McIntyre writes it out in his summary so you can find it easily)  
 
If you want the Sy basis kets, an equivalent set of experiments (using Sy as your second 
analyzer) will again give you 50/50 outcomes no matter whether you start with + or – in z, 
giving you  (in analogy to the above arguments)  

|+[	 = 	
1
2
	| +	 		+ 	

1
2
𝑒l�	| −	  

 |−[	 = 	
�
2
	| +	 	−	 �

2
𝑒l�	| −	  

(I have already used orthogonality of these two to get the – sign in the second equation)  
But this time we can’t just set a =0, otherwise we’d be saying |+[	 = |+S	, and that can’t be 
true. How do I know? Run the experiment with chained Y and X S-G’s! If you start with  
|+[	  and then measure Sx, you get 50/50 chance of up or down. (Same with |−[	 ) The x- 
and y-basis states are NOT the same. Written using the formalism of Postulate #4, this says 

+S +[
2 = 	 .5    (and 3 other similar equations, like +S −[

2 = 	 .5 , etc)  
Since we already know the x-states we can work this bracket equation out – I leave it as an 
exercise to you, and you should find that 

|+[	 = 	
�
2
	| +	 		+ 	 �

2
	| −	   

 |−[	 = 	
�
2
	| +	 	−	 �

2
	| −	  

 
Notice that the coefficient on the second ket is complex, but the absolute square of all these 
coefficients are all 50%.  
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Let’s take a little interlude to talk more about the meaning of this new “symbology”. 
Consider a particular state you get when you run particles through an X-SG, let’s choose the 
+ output port. Those particles are in a definite quantum state we call   |+S	  
If you measure Sx on such a state you definitely get +	ℏ/2.   
If you measure Sz on such a state, we know you have 50/50 chances of measuring  	±ℏ/2.   

We have written this above as |+S	 = 	
�
2
	| + +	 �

2
	| −  

(Postulate #4 tells us this is a 50%/50% mix of “spin up”  and “spin down” in z-direction) 
This state is called a quantum superposition of z-spin up and down. 
I think of  |+S	  as an equal superposition of “up” and “down” in the z-direction.  
Of course, |−S	 = 	

�
2
	| + −	 �

2
	| −  is ALSO an “equal” superposition of “up” and “down” 

in the z-direction (Equal, because both coefficients, squared, are .5) but now the minus sign 
on the second term is giving us a physically different state. The relative phase matters!  
 
Classically, you might be tempted to think of “equal superposition” as something like this: 
“a particle with X-spin “up” has a 50/50 mix of Z-spin outcomes. Maybe it’s up, maybe it’s 
down, I just don’t know. Like a tossed coin, which could be equally likely heads or tails. But 
that’s not right in QM, because you’d say the same thing about an X-spin “down”, and yet 
we know X-spin “up” and “down” are NOT the same states!  I personally prefer to say that a 
particle with X-spin “up” is z-up AND down, not up OR down! (That’s quantum mechanics!) 
 
One issue here is the difference between single particles in the state |+S	  and many similarly 
prepared particles. We’re more familiar with the latter case, where it makes sense to just talk 
about probabilities. Classically, if I have millions of X-spin “up” particles (and each one is 
either up or down in z) it’s like a pile of tossed coins. Half the measurements of z will reveal 
up, and half will reveal down. This situation is called a “mixed state”:  lots of particles, each 
with a definite Z-value, but we just don’t know which value until we look. A mixed state is 
classical, like a pocket-full of coins. You CAN prepare such quantum states, but they are not 
so interesting. What is novel in QM is that you can prepare superpositions, where EACH 
particle is NOT “spin-up” or “spin-down”, but rather each is a combination of both.  
 
Remember, |+S	   and |−S	  are different states, but either gives the same 50/50 z-outcomes. 
They are certainly different if you use an X-SG! But they are also different as shown in 
experiment 4(c).  Remember that one? If |+S	  and |−S	  were merely equally MIXED states 
of z-up and z-down, then when you combined them, you would STILL get an equal mixed 
state of z-up and z-down. (Right?) But that was NOT the outcome of 4(c)! That’s an 
unambiguous demonstration that superpositions are not just “mixtures”. Each particle with 
state |+S	  is a quantum superposition of z-up and z-down, with a definite PHASE relation 
between them. Spins are different from coins!  
|+S	   is not z-“spin up or spin down”, it’s z-“spin up AND spin down”! 
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MATRIX NOTATION: 
Bras and kets are essential notation, but it can get clumsy (e.g. taking inner products.) There 
is a nifty notation we can use to make manipulations simpler and clearer.  
In the case of vectors, sometimes I might write A =	 (Ax, Ay), an ordered pair of its 
components. You must have a basis already chosen to make sense of that. And, you can 
consider that “ordered pair” as a little matrix with just 2 entries. By analogy, once we have 
picked our z-spin basis, we can write our kets in a similar way.  
If a ket is |𝜓	 = 	a	| + 			+ 				b	| − , we can write it in shorthand as 

|𝜓	 = 𝑎
𝑏    That equal with the dot over it is read “is represented by”. (It’s not literally 

EQUAL, because if I change basis, the state is NOT changed, the representation changes!) 
In this notation, please confirm for yourself that 

 | +	 = 1
0  and | −	 = 0

1       This is a bit like saying  𝚤 = 	 (1,0) and 𝚥 = 	 (0,1) 

And, similarly, look back at our old results for  |+S	  to conclude 

|+S	 =
�
2
1
1   and |−S	 =

�
2

1
−1   (Convince yourself!)  

Going back to where I showed that if |𝜓	 = 	a	| + 	+ 		b	| − , then	 + 𝜓 = 	a,  
I would say in full generality that  

|𝜓	 = + 𝜓 	
− 𝜓 	  

That’s not really saying anything much different than “the x-component of vector A is 𝚤 	 ∙ 𝐴” 
 
What about bras? In order to get the inner product to be what we want, it’s nice and simple if  

|𝜓	 = 𝑎
𝑏 , then 𝜓| = 𝑎∗ 𝑏∗ .   

In this way, usual “matrix multiplication” rules give us whatever we want, e.g.  

𝜓 𝜓 = 𝑎∗ 𝑏∗
𝑎
𝑏 = 	 	 a 2 + 	 b 2 

 
Let’s redo some work I skipped above to figure out the representation of |+[	 .  

The discussion a few pages back led to |+[	 =
�
2

1
𝑒l� .  But I did not work out a.  

Let’s do it, using the fact that (from experiment, chaining a Y-SG to an X-SG): 

	 +S		 +[	
2 = .5   Now we can just plug in our results above… 

+S		 +[	 = 	
�
2 1∗ 1∗ 		 �2

1
𝑒l� = �

2
(1 + 𝑒l�)  (Brackets yield complex numbers!)  

Taking the magnitude square of that gives me  .5 =  �
2
(1 + 𝑒l�) �

2
(1 + 𝑒@l�) 

Now it’s just a bit of (complex) algebra to conclude 𝑐𝑜𝑠𝛼 = 0 or a = p/2, as claimed. (Do it!)  
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General Quantum States: 
Electrons have “spin ½”, meaning Sz yields only 2 outcomes, ±ℏ/2 .  Nature provides us 
with other particles with spin. Some are also spin ½, but e.g. some mesons have spin 1, and a 
“Stern-Gerlach”-type experiment would yield only 3 possible outcomes, 0, or ±ℏ.  
Particles can have spin “n/2” where n is any integer (and S-G-type experiment then gives 
only 2n+1 possible outcomes).  Integer spin particles are called “bosons”, half-integer spin 
particles are “fermions”.  
There are other very different measurements of various operators, A (being generic now), 
which yield only a finite range of outcomes, labeled by the n possible eigenvalues of A, 
which we call an. (A could be e.g., energy for certain systems) 
See McIntyre’s Fig 1.15 to see a generic depiction of such a system – it’s like the S-G picture 
we always draw, but with n-possible output states.  
 
The generalization of our quantum rules (developed for spin ½) is pretty straightforward.  
If our operator A has n eigenvalues, it has n basis kets:   |𝑎l	   (with i running from 1 to n).  
Basis kets are orthonormal and complete:  𝑎l 𝑎� = 𝛿l� ≡  {1 (if i=j), 0 otherwise.} 
Any arbitrary state can be written: 
|𝜓	 = 𝑎l 𝜓 		�

l�� |𝑎l  (this is completeness.) 
Compare this with the spin ½ formalism, back around p. 13 of these notes!) 
Sometimes we call this “expanding a state in a basis”.  (Do you see why?)  
 
The numerical terms 𝑎l 𝜓   (which used to just be called “a” and “b” in spin ½) are 
sometimes called “expansion coefficients”, they are rather like the components of a vector. 
 
Given an initial state |𝜓	 , the probability of measuring one of the particular eigenvalues an 
(when you measure A) will just be our usual result:  
𝑃𝑟𝑜𝑏 𝑎l = 	 𝑎l 𝜓 	 2 
This is the generalization of postulate 4, and provides the physical interpretation of the 
expansion coefficients. They are probability amplitudes: when you square their magnitude 
you find the probability of making that particular measurement.    
 
You might now take a look (again?) at my “introductory” notes to see a different 
summary of the story so far, as well as an outline of all the Postulates of quantum 
mechanics in one place. We are still not ready to present them in their full final/formal 
wording, we still need a bit more work to set us up.  


