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Quantum Mechanics 
Website: www.colorado.edu/physics/phys3220 
Please check it out – for resources, notes, up-to-date contact information, grading and exam 
information (evening exams, note the dates!) office hours, and lots more! 
 
Note - we have a “co-seminar” this term, Phys32210. It meets right after class every Friday. 
It’s optional, pass/fail, and has no homework! (Because of that, alas it doesn’t technically 
count towards your physics or CU degree)  It’s a chance to wrestle with conceptual and 
computational underpinnings every week. Please join in whenever you can, you are always 
welcome even if you do not register for it.  
 
Our text is McIntyre’s “Quantum Mechanics”. It takes what is known as a “spins-first” 
approach.  More on why this is a good thing to come shortly! But, if you would like a more 
traditional textbook (which may prove useful, especially later in the term, as a supplement), I 
can recommend Griffiths’ Quantum Mechanics text as well. If you continue on in physics, 
you will likely end up with a pile of QM books on your shelf – every author has a unique 
perspective, and more than any other branch of physics, these very different approaches are 
helpful in making sense of quantum physics   
_________________________________________________________________ 
 
Introductory Remarks, some background, perspectives, and motivations! 
 
Q.M. is a new (well, ok – it’s 100+ years old, but new compared to Newton) and absolutely 
necessary way of predicting the behavior of microscopic objects.  
It is also the best-tested, experimentally-validated physical theory known to humankind.  
 
It is based on several radical, and generally also counter-intuitive, ideas/observations: 
1) Many aspects of the world are fundamentally probabilistic, not deterministic. 
2) Some aspects of the world are essentially discontinuous (“quantized”)  
 
Bohr famously said: "Those who are not shocked when they first come across quantum 
theory cannot possibly have understood it.".  But, shocking or not, it’s an accurate, 
predictive, descriptive theory of the world. Although pop culture suggests there’s something 
fuzzy or metaphysical about it, we will find that it is a rigorous theory, with well-defined 
mathematical and logical underpinnings that allow us to calculate and predict observables.  
And, we (you!) can and will develop intuitions and skills for using it to do and learn useful 
physics (and engineering, for that matter). That’s our task for the term.  
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Humans have divided physics into a few artificial categories, called theories, such as 
• classical mechanics (non-relativistic and relativistic) 
• electricity & magnetism (classical version) 
• quantum mechanics (“QM”)  (non-relativistic) 
• general relativity (theory of gravity) 
• thermodynamics and statistical mechanics 
• quantum electrodynamics and quantum chromodynamics (relativistic versions of QM) 

 
Each of these theories can be taught without much reference to the others. This is a bad way 
to view physics, of course, since we live in a single universe that must obey one set of rules. 
Our goal should be to look for the connections between apparently different topics. We can 
only really learn a concept by seeing it in context, that is, by answering the question: how 
does this new concept fit in with other, previously learned, concepts? 
 
Each of these theories must rest on a set of statements called axioms or postulates or laws. 
Laws or Postulates are statements that are presented without proof; they cannot be proven; 
we believe them to be true because they have been experimentally verified.    (E.g. Newton's 
2nd Law, =𝑭"#$ = 𝑚𝒂  is a postulate; it cannot be proven from more fundamental relations. 
We believe it is true because it has been abundantly verified by experiment.) 
 
Newton's 2nd Law also has a limited regime of validity. If objects go very fast (approaching 
the speed of light) or are very small (microscopic, atomic), then this "law" begins to make 
predictions that conflict with experiment. However, within its regime of validity, classical 
mechanics is quite correct; it works so well that we can use it to predict the time of a solar 
eclipse to the nearest second, hundreds of year in advance. We can send a probe to Pluto and 
have it arrive right on target, right on schedule, 8 years after launch. Classical mechanics is 
not wrong; it is just incomplete. If you stay within its well-prescribed limits, it is correct. 
 
Each of our theories, except relativistic Quantum Mechanics, has a limited regime of validity. 
As far as we can tell (to date), QM (relativistic version) is perfectly correct. It works for all 
situations, no matter how small or how fast. Well... this is not quite true: no one knows how 
to properly describe gravity using QM, but everyone believes that the basic framework of 
QM is so robust and correct, that eventually gravity will be successfully folded into QM 
without requiring a fundamental overhaul of our present understanding of QM. String theory 
is our current best attempt to combine General Relativity and QM (some people might argue 
"String Theory" is perhaps not yet really a theory, since it cannot yet make (many) 
predictions that can be checked experimentally, but we can debate this!)     
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Roughly speaking, our knowledge can be divided into regimes like so: 

 
In this course, we mostly stick to the upper left quadrant of this figure. But we will show how 
non-relativistic QM is completely compatible with non-relativistic classical mechanics. (i.e. 
how QM agrees with classical mechanics, in the limit of macroscopic objects.)  
 
To get some perspective, let's step back, and ask   What is classical mechanics (C.M.)?   
It is, most simply put, the study of how things move! Given a force, what is the motion?  
So, C.M. studies ballistics, pendula, simple harmonic motion, macroscopic charged particles 
in E and B fields, spinning tops, etc. You might use the concept of energy (and conservation 
laws) to make life easier.  This leads to new tools beyond just Newton's laws: e.g. the 
Lagrangian, L, and the Hamiltonian,H, describe systems in terms of different (but still 
conventional) variables. With these, C.M. becomes more economical, and solving problems 
is often simpler.   (At the possible cost of being more formal)   Of course, what one is doing 
is fundamentally the same as Newton's F = m a.  
 
The equations of motion are given (in various formalisms) with equations like: 
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(But if you've forgotten the Lagrangian or Hamiltonian approaches, it's fine for now…)  
 
The general goal of C.M.  is to find the equation of motion of objects:  
Given initial conditions, find x(t) and p(t), position and momentum, as a function of time. 
Then, you can add complications: E.g. allow for more complicated bodies which are not 
pointlike, ask questions about rotation (introduce the moment of inertia, and angular 
momentum (L=rxp), move to many-body systems (normal modes), etc… 
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Q.M. is about the same basic thing:  Given a description of the energetics of a system, what 
are the observable outcomes of measurements? Q.M. tends to focus on small systems. 
(Technically, systems with small action, 𝐿𝑑𝑡	of	order	ℏ) The idea of “measurement”, and 
even what we mean by "motion", will have to be generalized.   
 
Having just completed C.M., your initial reaction may be "but, size doesn't matter"!  Neither 
L nor H cares about size, and C.M. often deals with so called "point objects". (Isn't a point 
plenty small?!) Unfortunately, in a certain sense, everything you learned in 2210 and 3210 is 
WRONG!  To be a little more fair, those techniques are fine, but only applied to real-world 
sized objects -  there's a regime of validity.  Ultimately, C.M. breaks down: if you try to apply 
the  Lagrangian/Hamiltonian formalism to an electron in a B-field (or in an atom) or an atom 
in a trap, a quark in a proton, a photon in a laser beam, etc… you will fail big time!  
 
It's not just that the equations are wrong. You can't patch them up with clever correction 
terms, or slight modifications of the equations, like relativity does at high speeds.  The whole 
MIND SET is wrong! You cannot ask for x(t) and p(t). It's not well defined! Point particles 
do not exist.  Particles have a wave nature, and waves have a particle nature. There is a 
duality in the physical world, which is not classical. This is often called complementarity. We 
must start from scratch, and develop a whole new framework to describe small systems.  
 
There are many new ideas involved. Some are formal and mathematical, some are rather 
unintuitive, at least at first. As a colleague of mine once explained, QM is kind of like trying 
to learn Swahili slang. First, you must learn a new language, and then you must learn a new 
culture,  and only then can you finally begin to truly understand the slang... I will try to 
motivate as much as possible, and we'll study plenty of concrete examples. Quantum 
mechanics comes from experiment!  
 
The laws (axioms, postulates) of Classical Mechanics are short and sweet:  Newton's Laws.  
(You might add "conservation of energy" if you want to extend C.M. to include 
thermodynamics.)  You can add two more postulates (that the laws of physics are the same in 
all inertial frames, and the speed of light is constant) to extend C.M. to include special 
relativity. The laws of classical electricity & magnetism (which still falls under an umbrella 
of Classical Mechanics) are similarly short and sweet: add in Maxwell's (4) equations plus 
the Lorentz force law.   
 
Alas, there is no agreement on the number, the ordering, or the wording of the Postulates of 
Quantum Mechanics. Our text makes a pretty standard choice… Quantum Mechanics has 
(roughly, depends who is counting) 6 Postulates. They cannot be stated briefly; when stated 
clearly, they are rather long-winded. Compared to Classical Mechanics, quantum mechanics 
is an unwieldy beast – maybe a bit scary and ugly at first sight, but very, very powerful.  
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As we go along, I will write the Postulates as clearly as I can, so that you know what is 
assumed and what is derived. Writing them all down now will do you little good, since we 
haven't yet developed the necessary vocabulary. But I will try, by writing partially correct, 
but incomplete or inaccurate versions of each Postulate, just so we can get started. Later on, 
when ready, we will write the rigorously accurate versions of the postulates.  
 
Don't worry if these seem rather alien and unfamiliar at first - this is really the subject of the 
entire course -  we're just making our first pass, getting a kind of overview of where we're 
heading.  So let's start.  
 
First, some essential language and math ideas, mostly coming from linear algebra.  
 
When we have a physical system, we will represent its physical state in an  abstract and 
compact way.  Our notation will be something like this:  |Y>   
 
That letter inside is the Greek, psi, pronounced "sigh". Or we might use a lower case psi, |y>  
We can put any symbol in there, depending on what information we want to share! The part 
that matters, symbolically, is not the specific “name” inside, but the “|” and “>” surrounding 
it. Because those kind of look like the right-hand part of a bracket symbol < | > in math, we 
call this state a “ket”.  I will freely talk about “the quantum state of an object”, or “the ket” as 
synonyms. This is our way of simply presenting useful information about some system in a 
shorthand way.  
 
By way of analogy, you have gotten used to similarly abstract abbreviations and notations 
rather like this before. For instance when you say a classical particle has momentum 	𝒑 or 
position		𝒓,  that “arrow on top” means “a vector”. This is a very shorthand notation hiding a 
lot of information (Hidden in there are three components, so there are three real numbers 
“buried” in that arrow, along with rules for how to manipulate it) Like in the ket, we freely 
choose to put different symbols under the vector, so using p we mean momentum, or L for 
angular momentum... When you FIRST saw vector notation, the arrow on top might have 
seemed weird, and abstract. Now, it just means… a vector! You know how to work with 
vectors (how to dot them, how to cross them, how to scale them, how to sketch them) and so 
at this point they are familiar friends. Different vectors get different labels, but always with 
the arrow on top. So similarly, different states will have different labels inside, but always 
with the “ket” notation. Kets will be familiar friends very soon too!  
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When we make measurements, there’s going to be an operator associated with that. An 
operator (I might call it A) is a mathematical object – it acts on kets (on quantum states), and 
yields different kets…   You’ve used operators before, of course - like the operator “d/dx” 
which acts on a function, takes its derivative, and gives you a different function.  In E&M, 
the “taking the curl” operator acts on an E-field and gives you physical information (it tells 
you the (-) time rate of change of the B-field, which itself is an “operator” acting on B!) 
There, the operator “curl”, which acts on a vector function, gives you a different vector 
function. (Another operator, one which acts on spatial vectors, might be e.g. the “rotate 
clockwise by 90 degrees” operator…. ) In quantum mechanics we will find operators 
associated with all measurements (like measuring the z-component of spin, or the position of 
an object, etc…) Part of our job is to figure out what those operators are. Once you know 
them, you will already know a lot about the outcome of experiments.   
 
So a quantum operator A acts on a ket and gives you a different ket. But sometimes, for 
certain special kets, acting A on it gives you the same state back unchanged, except for an 
overall multiplier.  Such special states are called eigenstates, (“eigenkets”) and the overall 
multiplier is called the eigenvalue. Thinking back to simpler analogies, if you “operate” on a 
vector, you might stretch it, rotate it, flip it, alter it,… turning it into another vector. If your 
operator acts on a particular vector and comes up with the same vector doubled in length – 
you would say the vector was fundamentally unchanged except for an overall multiplier of 
the number 2. So that would be an “eigenvector”, with “eigenvalue 2”) 
 
If you haven’t had linear algebra in a while, you might want to review the chapter on 
eigenvalues, but not to worry - the procedure is straightforward, at least in the electron-spin 
case,  so you’ll get plenty of practice here. For the situations we will start with, many 
operators of interest will have only two possible eigenvalues! 
 
Here is the quantum notation:  If |y> is one of those special states (an eigenstate) then   
A |y> = a | y > ,  
where the little “a” on the right is just a number (a simple multiplier). The operator A acts on 
a state, and gives us BACK that same state, except with that multiplier “a” out front.  
Since this is a special state I should really give it a name that acknowledges its special status. 
Calling it |y> is so generic… we should give it a label that immediately tells us what the 
eigenvalue is going to be!  McIntyre would, in this case, rename this particular special ket 
|a>, so he would say A |a> = a |a>.   
Yes, that’s really compact! In words: the first A is the operator, it acts on the ket |a>, and the 
result is a new ket, which is the NUMBER “a” multiplied by the ket we started with,  |a>.  
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Every “ket” has a partner. Because “ket” was named for the right half of a “bracket < | >”, 
the partner, (the left half of the bracket) is called the “bra” (Don’t blame me, this is the 
notation!) We write it just as you might expect: the partner of the ket |y> is the bra <y|.    
 
The main idea here is that kets are a lot like vectors, and the bra is useful because we like to 
“dot” vectors. The analogy here is going to be that the “dot” of a bra with a ket is a bracket, 
namely <y|y>, or, if bra and ket are different objects, <f|y>.  We’ll get into this linear 
algebra soon – for now, don’t sweat the details! With that mathematical notation as 
background, let’s write down the postulates of QM.   
 
Like I said, this is not going to mean a whole lot to you just yet, but as the term goes by you 
can (should!) revisit this, and see that it makes more sense, that the words have more 
concrete meanings for you, that you have examples in mind where you can USE these 
postulates to calculate and predict experimental outcomes!  
 
 
Postulate 1: The state of a physical system is completely described by a mathematical object, 
called the quantum state or ket, written with the novel notation (see discussion above):  | Y>   
 
The ket is not "the particle", or "the position of the particle", or “the spin of the particle”, it is 
merely a mathematical object which represents information about the particle.  
 
You might compare/contrast this with a classical analogy, e.g. 		𝒓(𝒕) is not “the particle”, but 
it is “the position of the particle as a function of time”, and contains a lot of useful 
information about the particle – but not everything (what about mass, charge, spin, etc…)  
  
At first,  the ONLY property we will pay any attention to is the “spin” of the electron, 
specifically the x-, y-, and z- components of its spin. Then we’ll talk about the energy of the 
system. Later, we will add in spatial information (position and momentum), and consider 
situations more complicated than just “an electron in a B-field” – at which point the math 
will ramp up a bit in difficulty, but all the fundamental ideas will remain the same!  
 
Postulate 2 says that outcomes of measurements (“physical observables”) will always have 
associated with them a mathematical operator.  (See the discussion a few pages earlier about 
what an operator is and does…)  For now, this is just the basic claim that we CAN find a 
mathematical operator associated with any/all observables.  
 
Postulate 3:  The ONLY possible outcomes of a measurement of a physical observable is 
one of the “eigenvalues” of the operator A associated with that measurement. 
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Postulate 3 does not tell you what the outcome will be, only what possibilities there are. (The 
outcomes are covered more in postulate four, but are not always determinate!) Since 
eigenvalues of many operators are discrete (and limited in number) this is where the 
“quantum” aspect starts to kick in – not all measurement outcomes are observed, only those 
that are eigenvalues of the measurement operator! That’s our first “quantum weirdness” 
(classically most measurements will yield a continuum of possibility outcomes. ) 
 
Given a quantum state |y>, if you measure a physical observable (with associated operator 
A),  we just said (postulate 3) that the only possible outcomes are ONE of the eigenvalues.  
If the operator A has several possible eigenvalues, we might label them an where e.g. a1 is 
one possibility, a2 is another, etc. And now we get to our key postulate:  
  
Postulate 4:  the probability of measuring any one particular eigenvalue an is given by  
𝑃𝑟𝑜𝑏 measuring	one	specific	result	𝑎" = 	 𝑎"|𝜓 T 
(Where |an> is the normalized eigenvector of the operator A with the eigenvalue an)  
Look again at the previous math overview pages to understand this notation. We’ll practice 
with this a lot – when we start dealing with specific examples it won’t look so abstract. 
 
Postulate four is another non-classical result – quantum physics does not and can not tell you 
exactly what the outcome of any possible experiment is. In many situations, it can only tell 
you what outcomes are possible, and the probability of any given outcome. This is different 
from our “deterministic” worldview, where we have come to believe that if we know 
everything about a system, we can precisely predict the state of the system in the future. In 
QM, there is some indeterminacy – postulate 4 rigorously tells you the “odds”, but not the 
specific outcome in any one given case.    
 
Postulate 5: When you measure something (with associated operator A), and you get some 
given result (an, one of the eigenvalues of A from postulate 3, with odds given in postulate 4), 
the system will now be in a new state. This postulate gives a formula that tells us what the 
new state is (but the formula involves something called a “projection operator” Pn that I 
haven’t defined yet. It’s coming in Chapter 2) Here it is, for later reference:  

𝑁𝑒𝑤	𝑠𝑡𝑎𝑡𝑒	|𝜓′ = 	
𝑃"|𝜓
𝜓|𝑃"|𝜓

 

 
The numerator involves an operator Pn, which in words tells you “the projection of a state 
into a particular eigenstate we have labeled by an”. The denominator is a number, needed to 
make the outcome state normalized. This is likely not familiar language or notation yet (!) 
The point is - the new state is well defined, given some experimental outcome. When you 
make a measurement, even if you can’t predict it, after you make it you know your exit state.  
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Postulate 5 is sometimes called the “collapse” or “measurement” postulate.  We have taken a 
state, made a measurement, got an outcome, and now we have a new/different state than we 
started with. Measuring quantum systems can affect them! 
 
A lot of people struggle with this postulate, including many great physicists who want to 
know the mechanism of this collapse. Lots of philosophy of science (and argument) has gone 
into making sense of this postulate, and there are people who choose different language (and 
thus interpretation) than this. But it works, and it’s a postulate – we accept it to see where it 
leads us!   
 
Postulate 6:  As time goes by, quantum states evolve. This “time evolution” (in the absence 
of measurements!) is given by a simple equation, involving the Hamiltonian (the same one 
from classical physics, which I think of informally as a formula for the energy of the system)  
Measurement of energy is associated with an operator, we name that operator H, and then 
time evolution in QM is given by Schrodinger’s (time-dependent) equation:   
 

𝑖ℏ
𝑑
𝑑𝑡 |𝜓(𝑡) = 𝐻 𝑡 		|𝜓(𝑡) 	 

“i” here is the complex number ( −1	), ℏ	is “h-bar” is Planck’s constant over 2p, and this is 
a first order differential equation whose solution tells you the state as a function of time.  
 
One's first reaction to Postulate 6 might be "Where did that come from?" How on earth did 
Schrödinger think to write that down? We will try to make this equation plausible and show 
the reasoning that lead Schrödinger to this Nobel-prize-winning formula. But, remember, it's 
a Postulate, so it cannot be derived. We believe it is true because it leads to predictions that 
are experimentally verified.  
 
 At this moment, I realize these postulates look totally formal and abstract and not at all like 
“physics”… They will become more and more concrete for you as we look at physical 
examples.  
 
 Here’s a summary so far of where we are: 
The Conventional Umpire:  "I calls 'em as I see 'em." 
The Classical Umpire:  "I calls 'em as they are." 
The Quantum Umpire:  "They ain't nothing till I calls 'em."  
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In quantum mechanics, we are not allowed to ask questions like "What is the particle doing?" 
or "Where is the particle?" or “what is the angular momentum vector for this particle”? 
Instead, we can only ask about the possible results of specific measurements. For instance, 
we might ask “if I measure the z-component of the spin of this electron in a particular well-
described experimental apparatus, what outcomes might I get, and what is the probability that 
I will get such-and-such a result??”  
 
QM is all about measurement, which is the only way we know anything about the physical 
universe. Quantum Mechanics is fundamentally a probabilistic theory. This indeterminacy 
was deeply disturbing to some of the founders of quantum mechanics. Einstein and 
Schrödinger were never happy with these postulates. Einstein was particularly unhappy and 
never accepted QM as complete theory. He agreed that QM always gave correct predictions, 
but he didn't believe that the ket (the quantum state) contained all the information describing 
a physical state. He felt that there must be other information ("hidden variables"), which if 
known, would allow an exact, deterministic computation of the result of any measurement. In 
the 60's and 70's, well after Einstein's death, it was established that "local hidden variables" 
theories conflict with experiment (!) Einstein was wrong on this one - the postulates of QM 
are consistent with experiment! The “ket” really does contain everything there is to know 
about a physical system, and it only allows probabilistic predictions of the results of 
measurements. 
 
QM is infuriatingly vague about what exactly constitutes a "measurement". How do you 
actually measure observable properties of a particle? For a position measurement, you could 
have the particle hit a fluorescent screen or enter a bubble chamber. For a momentum or 
energy measurement, it's not always so clear. For the z-component of spin… well that one is 
pretty straightforward, and was historically first done back in 1922. That’s where we will 
start the term! But for now, "measurement" is any kind of interaction between the 
microscopic system observed and some macroscopic (many-atom) system, such as a screen, 
which provides information about the observed property. 
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Statistics review. 
 
 Because QM is fundamentally probabilistic, let's review some elementary statistics. In 
particular (to start) let's consider random variables that can assume discrete values.  Suppose 
we make many repeated measurements of a random discrete variable called x. An example of 
x is the mass, rounded to nearest kg (or height, rounded to the nearest cm) of a randomly-
chosen adult.   
 
We label the possible results of the measurements with an index i.   For instance, for heights 
of adults, we might have x1=25 cm, x2 = 26 cm, etc (no adult is shorter than 25 cm).  The list 
{x1 , x2, ... xi,... } is the called the spectrum of possible measurement results.  Notice that xi is 
not the result of the ith trial (the common notation in statistics books).  Rather, xi is the ith 

possible result of a measurement in the list of all possible results. 
 
N = total # of measurements.    
ni = # times that the result xi was found among the N measurements. 
 
Note that 𝑁 = 𝑛__   where the sum is over the spectrum of possible results, not over the N 
different trials. 
 
In the limit of large N (which we will almost always assume), then the probability of a 

particular result xi is i
i
nP
N

=  =  (fraction of the trials that resulted in xi). 

 
The average of many repeated measurements of x  = expectation value of x = 

𝑥 =
𝑠𝑢𝑚	𝑜𝑓	𝑟𝑒𝑠𝑢𝑙𝑡𝑠	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑟𝑖𝑎𝑙𝑠	

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑖𝑎𝑙𝑠 =
𝑛_	𝑥__ 	
𝑁 =

𝑛_
𝑁 	𝑥_

_

= 𝑃_	𝑥_
_

 

 
The average value of x is the weighted sum of all possible values of x:   𝑥 = 𝑃_	𝑥__  
This is the expectation value of x (even though you might e.g. NEVER find any particular 
individual whose height is the average or "expected" height!)  
We can generalize this result to any function of x:   
𝑥T = 𝑃_𝑥_T_  ,    or     𝑓(𝑥) = 𝑃_𝑓(𝑥_)_   

The brackets ...  means "average over many trials". We would call this the "expectation value of x2".   

A measure of the expected spread in measurements of x is the standard deviation s, defined 
as "the rms average of the deviation from the mean".   
"rms" = root-mean-square = take the square, average that, then square-root that.   
𝜎 = 𝜎T = (𝑥 − 𝑥 )T      ( s2 is called the variance.) 



 

Introductory notes for QM I.  
 

8/14/2016 © University of Colorado, Steven Pollock and Michael Dubson 
 

12 

Let us disassemble and reassemble:  The deviation from the mean of any particular result x is 
Δ𝑥 = 𝑥 − 𝑥 .  The deviation from the mean is just as likely to be positive as negative, so if 
we average the deviation from the mean, we get zero: Δ𝑥 = 	 𝑥 − 𝑥 = 0.   
 
To get the average or typical size of	Δ𝑥, we will square it first, before taking the average, and 
then later, square-root it:  𝜎 = Δ𝑥T = (𝑥 − 𝑥 )T  
 

It is not hard to show that another way to write this is	𝜎 = 𝑥T − 𝑥 T:  
There are times when this way of finding the variance is more convenient, but the two 
definitions are mathematically equivalent:     
 
Proof: 

𝜎T = 𝑥 − 𝑥 T 		= 𝑃_ ∙ (𝑥_ − 𝑥 )T 				=
_

𝑃_ ∙ (𝑥_T − 2𝑥_ 𝑥 + 𝑥 T)T
_

 

							= 	 𝑃_𝑥_T 			− 			2 𝑥 𝑃_𝑥_ 		+ 		 𝑥 T 𝑃_
___

			= 𝑥T − 2 𝑥 T + 𝑥 T						 

𝜎T 		= 𝑥T − 𝑥 T 
_________ 
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Complex Number Review: Quantum states are in general complex objects. So it's 
worth a quick review of complex numbers, since we'll be dealing with this all term. 

𝑖 = −1,			𝑖 ∙ 𝑖 = −1,			𝑠𝑜	𝑖 = −
1
𝑖 	𝑜𝑟

1
𝑖 = −𝑖 

Any complex number z can always be written in either 
Cartesian form:   z = x+iy       or     Polar form:        z = 𝐴𝑒_i 
 
You can visualize a complex number by thinking of it  
as a as a point in the complex plane: 
This picture also matches up with one of the most important  
theorems of complex numbers, Euler's relation: 
𝑒_i = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃      (Which can be proven w/ a Taylor Series expansion). It says:  
Re[z] = x = A cosq 
Im[z] = y = A sinq        (Look at the picture above, do you see the connections?)  
 
The complex conjugate of z is called z* = 𝐴𝑒l_i.    Note that: 
𝑧 ∙ 𝑧∗ = 𝑥 + 𝑖𝑦 𝑥 − 𝑖𝑦 = 	𝑥T + 𝑖𝑦𝑥 − 𝑖𝑥𝑦 + 𝑦T = 	𝑥T + 𝑦T 
is purely real.  
We  call |z| = "modulus of z" or "amplitude of z", and define it as 

𝑧 = 𝑥T + 𝑦T, and from the above,  𝑧 T = 𝑧 ∙ 𝑧∗.   
Notice that 𝑧T = 𝑧 ∙ 𝑧 ≠ 𝑧 ∙ 𝑧∗ = 𝑧 T  (Squaring complex numbers does NOT always yield a 
real result, and in general is different than multiplying by the complex conjugate. The square 
of a complex number is DIFFERENT from the square of the amplitude of that number.)  
 
Here's a useful fact: 
𝑒qr∙qs = 𝑒qr ∙ 𝑒qs       (where z1, z2 are any 2 complex numbers)  
This means in particular that 𝑒(tuv) = 𝑒t ∙ 𝑒v 
(which in turn can be used to derive various trig identities, like e.g. that  
cos(a+b) = cos(a)cos(b)-sin(a)sin(b):  just look at the real part of the equation) 
 
Also, if  𝑧w = 𝐴w𝑒_ir, 	𝑧T = 𝐴T𝑒_is  then it is quick to find the product: 
𝑧w	𝑧T = 𝐴w𝐴T𝑒(iruis) 
 

One more useful fact about complex numbers:  
Any complex number z, written as a complicated expression, no matter how messy, can be 
turned into its complex conjugate z* by replacing every i with -i, so e.g.  

𝑧 =
(5 + 6𝑖)(−7𝑖)
(2𝑖 + 3𝑒l_i)

		𝑚𝑒𝑎𝑛𝑠		𝑧∗ =
(5 − 6𝑖)(7𝑖)
(−2𝑖 + 3𝑒_i)

	 


