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Angular Momentum (warm-up for H-atom)

Classically, angular momentum defined as (for a 1-particle system)

—

L

Fxﬁ y m

roy oz 7 p=my
X y z

X V4 X

P, P, P 0

Note: [ defined w.r.t. an origin of coords.

L=30p.-2p,)+ P (@, -xp.)+Z(xp, -)p.)

(In QM, the operator corresponding to Lxis L = p. -2 D,

_n

0
—, etc.)

P: 10z

Classically, torque defined as 7 =7 x F , and 7 = ar (rotational version of F' =ma)

dt

If the force is radial (central force), then 7 = 7 x F' = 0=> L = const.

H-atom:

Ak electron

(Coulomb force)

—

proton at origin

In a multi-particle system, total average momentum:

Ltot =

E L. is conserved for system

|

isolated from external torques.

sum over particles

Internal torques can cause exchange of average momentum among particles, but

L

tot

remains constant.

In classical and quantum mechanics, only 4 things are conserved:

Page

energy

linear momentum
angular momentum
electric charge
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Back to QM. Define vector operator L

operator unit vector

There is a general theorem in QM (which we have not proven):

0 ol

dt h

d h

- i)

d<L >, d<L >,
—X + Yy +...
dt dt

Claim: for a central force such as in H-atom

V=V(Fr)=" ke%, then [ﬁ,i]= 0  (will show this later)

This implies cj{—L =0 (justlike in classical mechanics)
t

Angular momentum of electron is H-atom is constant, so long as it does not absorb
or emit photon. Throughout present discussion, we ignore interaction of H-atom
w/photons.

Will show that for H-atom or for any atom, molecule, solid - any collection of atoms
- the angular momentum is quantized in units of . | L | canonly change by integer
number of A's.

Units of L =|L]|=|n]
Note[2]=[rp} [1]- [E] (since p = hk)

= W-LR-b]

Claim: [Lx,iy ]= inL.

and A n (i, j, k cyclic:

[ ].]= ihL, X'y z or
y Z X or
ZXy )
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To prove, need two very useful identities: B;’ ?]C J =[lA, C] J+[53,§]JB

Proof: [LX,L),]= [y : TPy 2Py ‘XPZ]=

p.szp.] Upz,xpz Zpy,Zpr Zp),xpz]

y[pz,Z]P 0 ,pz]P

+zh

all other terms
like [y, px] =

= +ih(xpy -yp,)=ihL,

(Have used [x,px]= in, [x,y]= 0, [X, p, ]= 0, [px,py ]= 0, etc.

['m dropping the " over operators when no danger of confusion.

Since [Ly, Ly ] # 0, cannot have simultaneous eigenstates of ix and iy.

Lot =5 (BL])y -(3) e

o
ih<iz>

However, [’ =L-L = I> + Lj + L’ does commute with L.

|

Claim: [LZ,LZ]=O

12,1]=0

,i=X,y,orz

Proof: [LZ,LZ]= [LXZ,LZ] + [L 2L ]+ ‘LZZ,L |

=Lx[Lx’Lz] [anL ]L + L [L L ] [Ly’L ]L
- ihLy - thy + ’th +th

=0 (Note cancellations)

[L2, L;] = 0 => can have simultaneous eigenstates of /2, iz (or L2, L: any1)
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Looking forward to H-atom:
~ h
H =~ ( )+ () )
2m
We will show that [f[ i ]= 0 [ﬁL ]= 0

=> simultaneous eigenstates of #, L’, L.

energy q-nbr

Z/j=1/j nlm<_LZ

f

L2 g-number

g-number

When we solve the TISE (V*+V(r) )y = E ¢ for the H-atom, the natural coordinates
to use will be spherical coordinates: r, 0, ¢ (notx,y, z)

zZ ’:A x=rsin0 cos @
&7 y=rsin 6 sin @
6 0 z=rcos 0
y
0 e
X
’@ 9
Just rewriting V* = — +—5 +— in spherical coordinates is a little ugly.

ox” dJdy° 0z

But separation of variables will give special solutions, energy eigenstates, of form
Y(r,0,¢) = R(r) Y(0,9) = R(r) ©(0) D(¢)

The angular part of the solution Y (0, ¢) will turn out to be eigenstates of L2, L, and
will have form completely independent of the potential V( r).

*
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Given only [L?, L;] = 0 and iz, iz hermitean we know there must exist

simultaneous eigenstates f (which will turn out to be the Y (6, ¢p) mentioned above)
such that

Lf=af o Lf=wf

(A will be related to [, and p will be related to m)

One can show that fwill depend on quantum-numbers I, m, so we write it as fj™

Lf"=nld+1)- 1"

* m m
L f" =hm-f,
wherel=0,% o1 % o om=—l,-141, .. 11,1

1" =Y"(6,¢) will be determined later.

Notice max eigenvalue of L, (=1h ) is smaller than square root of eigenvalue of
L =nylll+1

So,inQM, L;< |L| (Interesting thatit’s not “or equal to”! The uncertainty
principle is lurking in there)

Also notice [ = 0, m = 0 state has zero angular momentum (L? = 0, L, = 0) so, unlike
Bohr model, can have electron in state that is "just sitting there" rather than
revolving about proton in H-atom.
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m
4 S
1 1 - -
0 0 0 - -
-1 e -
2 —  —
¢
0 1 2 3

As we know from earlier in the term, there are 2 flavors of angular momentum:

Q

1. Orbital 2. Spin
Ang. Mom. Ang. Mom.
(integer € only) (integer or % integer OK)

We started focusing on the latter, and now we are paying attention to the former.
But, they are basically the same story, and when you write them as a ket
|, m> you can think of that as exactly like |s,m>...
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The H- atom
O me
mp >> me => /
proton (n(.early) 9 m, ~ 1840 me
stationary
Hamiltonian of electron = # = 5; +V(r)
m
—ke> -kZe
= =1 -
V)= k= Ve (or V() =)
%) 4 4 2
p-_pp _-h
L_pb Mg

TISE: 7:\[ =F =>special solutions (stationary states).
y =E,y =>special y

t

-iE,
= h
Y D=y (Ve
—iEnt/
General Solution to TDSE:  W(x,?) = Ecne hz//n(x)

Spherical Coordinate System:

z F
@ Z=rcosf
0 0 Xx=rsin® cos @
y=rsin0 sin ¢
r
0 o
Y=y (r,6 ¢) volume

Normalization: de|1/j|2 -1

[[ar [(a6 [ dprsinoy[ -1

Need V? in spherical coordinates. (Work it out!)
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Vif=

2
izi(rzg)+—2l_ i(sintﬁ?%)+ - .12 8]:
r-dr\ dr) r°sinf 96 00) rsin“0\d¢

= (radial) + riz (angular)

ES

In Classical Mechanics (CM), KE = p? /2m = KE =
(radial motion KE) + (angular, axial motion KE)

A

L =|17><m17|=mrvl

=L
=v. =L )
1 ’ r
KE =—mv2=ﬂ(vf+vi)= Py 5
2 2 2m 2mr
o —
radial 1
—2xangular

r
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Same splitting in QM:

2 2
I =(EF><V) =-h|— ! i(sin Bi)+ 12 g .
i sin 6060 00) sin” 0 0¢

(Notice I depends only on 6, ¢ and notr.)

-h?
Vi +V(ryy =E-y

2m

i -

2 r2
Ll ii(rza—w) ¢ L Y + V()Y = Ey

2m r* or or 2mr?

Separation of Variables! (as usual) Seek special solution of form:
Y(r,0,9) = R(r)-Y(0,9) = R(r)-0©(0) ()

Normalization: [dV |y |2 =

o b4 2
dr r*R| - [dO (dgsinglY|” =1
~!‘rr|| [ [¢sm||

1 1
(Convention: normalize radial, angular parts individually)

Plugy =R-Yinto TISE =>

2
f Kzi 2 IR R2L2Y+V-R-Y=E-R-Y
2m r° dr dr | 2mr
Multiply thru by —2mr2L
n RY
2
Ldf2dR) 2 pyl - Ly
Rdr\' dr] n n’y
%f_/
7(r) g(0,9)

=> flr) =g (6, ) = constantC = £(£ +1)

LY = B CY = hUUL+1)Y (SeePage H-5)

Have separated TISE into radial part f{ r ) = (€ + 1), involving V( r ), and angular
part g (6, @) = £(£ + 1) which is independent of V().
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=> All problems with spherically symmetric potential (V = V(r)) have exactly same
angular part of solution: Y =Y(6, ¢) called "spherical harmonics".

Let’s focus first on angular equation: BY,’” =R’ +1)Y," Want to solve for the

Y™'s -"spherical harmonics”.  One CAN start with commutation relations,

and, using operator algebra, solve for the eigenvalues of L?, L,. That gives

LY =n U+ DY where £=0,%,1,3/2, ...
LY" =mhY" m=-¢,-£+1..+¢

Or, we can use the differential equation version in position space, using
Y"=Y"(0,9).

It's easy to find the ¢-dependence:

~ hd

L =—— (showed in HW)
R 11

I;Y = Eg—Y =#hmY (and you can cancel the 7)
: i 9g

Assume Y(6,p)=0(0) P(¢) =

d2=im b = q)(¢)= e+im(p

do

If we assume (postulate) that s is single-valued than
D (p+2m) = P(p) = " =1

=>m=0,+1,+2,... Butm=-7¢, ..+ ¢

So for orbital angular momentum, £ must be integer only: £=0, 1, 2, ... (we throw

out %2 integer values when dealing with orbital angular momentum, as versus spin!)
*
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The solution of the polar angle part is somewhat messy, so [ just summarize
some results:

Normalization from fdﬁqua sin 6 ‘Y['"

2

Notice case £ =0 | Y =const= %_4”

T 2

(since fdﬁfd(psinl9=fd£2 =4ur)
0 0

Example: 3
Y, =— |- sin6e*
Y4

Y =+, {i sin G~
8

Convention on * sign: ¥, =(-1)" (YZ'" )*

The spherical harmonics form a complete, orthonormal set (since eigenfunctions of
hermitean operators)

fdQ (Y/m)*Yzm = Oy Oy

Completeness:
Any function of angles f'= f (6, ¢) can be written as linear combo of ¥,"'s :
© +/
fO,9) = Z >
=0 m=-/

Likewise (when we get to the radial part): [ “dr r*(R,,) R,y = 8,0,

=> H-atom energy eigenstates are

,l/}n/’,m(r’97¢) = Rn((r)Y(/m(H9¢) = Rn({‘®/jmeim¢

n=1,2,..;4=0,1 .. (n-1); m=-£...+%

We haven’t talked about the radial part yet, so let’s go there:
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McIntyre Ch8: The radial part!

hZ
Radial SE: | x - ‘R
2mr

~h*rR

2
mr

00 +1)

-h*d{ ,dR
2mr dr

r E) + r-R(V-F) =

Change of variable: u (r) = r-R(r)

(Z'dr uf - 1)

2
Can show that ¢ rzd_R _du
rdr dr

dr?

du dR d’u dR dR d’R
—=R+r— —=—t—r

dr dr’ dr? - dr dr dr?
same!
ld(,dR\ 1(  dR ,d’R dR  d°’R

——|r == 2r—+r —— |=2—+r—;
rdr dr 7 dr dr dr dr

—h* d’u N [V s n i+

2m F 2m  r?

]M=Eu

Notice: identical to 1D TISE:

2 2
h dlé} + Vg = Ey except
2m dr
r: 0 -> oo instead of x: - 0 -> + 0o and
2
V(x) replaced with Vg =V(r) + h S (L +1)
- 2mr

Verr = "effective potential”
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Boundary conditions: u (r = o0 ) = 0 from normalization [ dr |u |2 =1

u(r=0) =0, otherwise R = “ blows up atr=0 (subtle!)
r

A A
Vir)=-2,V, =2+

B

2

Ver = +1/r°

=-1/r

Full solution of radial SE is very messy, even though it is effectively a 1D problem

(different problem for each )

Notice that energy
eigenvalues given by
solution to radial
equation alone.

Seek bound
state
solutions E<0

E > 0 solutions are
unbound states,
scattering solutions

Power series solution (see text for details). Solutions depend on 2 quantum

numbers: n and ¢ (for each effective potential £ =0, 1, 2, ... have a set of solutions

labeled by index n.)
Solutions: n=1, 2, 3, ... for given n
£=0,1, ..(n-1) Pmax=(n-1)

n = "principal quantum number"

energy eigenvalues depend on n only (it turns out)

242
g B g o mke)

n

hZ

e same as Bohr model, agrees with experiment!

, E = 5 (independent of ¢)
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First few solutions: Rue (1)

rormalization "Bohr radius"

-V, A/Z Age h*
R, = 106/9 ao=h/(me2= 0462
Ry, = Azo(l_L)e_Aao

2a,

R, = Am(L)e_A%
a,
NOTE:
o for £ = 0 (s states), R (r = 0) # 0 => wavefunction { "touches" nucleus.

efor£+#0,R(r=0)=0 =>1y does not touch nucleus.

£ # 0 => electron has angular momentum. Same as classical behavior, particle with
non-zero L cannot pass thru origin (L =7xp:r=0= p = )

Can also see this in QM: for € # 0, Ve has infinite barrier at origin = > u(r) must
decay to zero at r=0 exponentially.

Ve
r = exponential decay in

\/f/ R(r) = @ as well.

Completeness: any arbitrary (bound) state is

Y = Z Cotm W ntm (c's are any complex constants)
nyl,m
energy of state (n, £, m) depends only on n.

En = - constant/n? (states £, m with same n are degenerate)
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-
0 1 2 3
n= 4 | 4 (1) 4 (3) _4d (5) _4f (7))
3 3 3p 3d
2 2 25

Degeneracy of nth level is
n2
(2en? if you include spin)
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Radial Probability Density

favly[ =1
Prob (find particle in dV about 7 ) = |1//(77)|2dV
If£=0,y = Y(r) then de|1/J|2 - fdr4:zr2|1/1(r)|2

Prob (findinr - r+dr) s P(r)dr = 4w ‘I/J(l’)‘zdr

P(r) = radial probability density
-7 P(r)

Ground state: y,,, = Ade ”®
_2/
P(t)= |A|’ 4mPe /®

Notice P(r) very different from y(r):

Yy

\

r

If+0,y=y(r,0, ¢@)=R(r) Y(O, @), then

faviul = fdrr* |RT dQA|Y|T=1—
i i

Prob (findinr - r +dr) =r? |R|? dr

"solid angle"

P(I‘) =12 |R|2 eveniff£#0

Note: ¢=¢(r)=R-Y=R-L=|R|2=4;r|1/;|2 if

Nre

so P(r) = r2|R|2 =47 r2|1/1|2
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H-atom and emission/absorption of radiation:

If H-atom is in excited state (n = 2, £ = 1, m = 0) then it is in energy eigenstate =
stationary state. If atom is isolated, then atom should remain in state 210 forever,
since stationary state has simple time dependence:

W(F, 1) = 9, (r)-e "

But, experimentally, we find that H-atom emits photon and de-excites: Y210 -> Y100
in=107s->107s

E4

2p
‘ AN By =hf=AE
1s

The reason that the atom does not remain in stationary state is that it is not truly
isolated. The atom feels a fluctuating EM field due to "vacuum fluctuations".
Quantum Electrodynamics is a relativistic theory of the QM interaction of matter
and light. It predicts that the "vacuum" is not "empty" or "nothing" as previously
supposed, but is instead a seething foam of virtual photons and other particles.
These vacuum fluctuations interact with the electron in the H-atom and slightly alter
the potential V(r). So eigenstates of the coulomb potential are not eigenstates of the
actual potential:  Vecoulomb + Vvacuum

Photons possess an intrinsic angular momentum (spin) of 1 A, meaning

£=1=‘f‘=h,/£(€+l) =2

andL, =h

So when an atom absorbs or emits a single photon, its angular momentum must
change by 1 A, by Conservation of Angular Momentum, so the orbital angular
momentum quantum number ¢ must change by 1.

"Selection Rule": A¢ =+ 1 in any process involving emission or absorption of 1
photon => allowed transitions are:
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n=1

If an H-atom is in state 2s (n = 2, £ = 0) then it cannot de-excite to ground state by
emission of a photon. (since this would violate the selection rule). It can only lose
its energy (de-excite) by collision with another atom or via a rare 2-photon process.
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