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Angular	Momentum	(warm-up	for	H-atom)	
Classically,	angular	momentum	defined	as	(for	a	1-particle	system)	

	
	
	
	 	 			    r! 	

	
	
	

	 	 	 Note:	   L
!
defined	w.r.t.	an	origin	of	coords.	

	
	
	

	(In	QM,	the	operator	corresponding	to	Lx	is	 etc. ,   ,    
zi

ppzpyL zyzx ∂

∂
=−=
!"
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Classically,	torque	defined	as	 ,  Fr
!!!

×≡τ 	and	
dt
Ld
!

!
=τ 	(rotational	version	of	 am 

!!
=F )	

If	the	force	is	radial	(central	force),	then	 .constLFr =⇒=×=
!!!!  0  τ 	

	
H-atom:					
	
	
	
	
	
	
	
	
In	a	multi-particle	system,	total	average	momentum:	
	

∑=
i

iLL ˆ
tot

!
	is	conserved	for	system	isolated	from	external	torques.	

	 	 sum	over	particles	
	
Internal	torques	can	cause	exchange	of	average	momentum	among	particles,	but	

 tot L
!

remains	constant.	
	
In	classical	and	quantum	mechanics,	only	4	things	are	conserved:	

§ energy	
§ linear	momentum	
§ angular	momentum	
§ electric	charge	
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Back	to	QM.		Define	vector	operator	  L̂
!
	

	
	 			operator																							unit	vector	

            zLyLxLL zyx ˆˆˆˆˆˆˆ ++=
!

	
	
There	is	a	general	theorem	in	QM	(which	we	have	not	proven):	

	 [ ]    Qi
dt
Qd ˆ,Ĥ

!
= 	
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Claim:		for	a	central	force	such	as	in	H-atom	
	

[ ] 0 then  
2

=−== Lr
kerVV ˆ,,)( Ĥ 				(will	show	this	later)	

This	implies	    0=
dt
Ld
!

(just	like	in	classical	mechanics)	

Angular	momentum	of	electron	is	H-atom	is	constant,	so	long	as	it	does	not	absorb	
or	emit	photon.		Throughout	present	discussion,	we	ignore	interaction	of	H-atom	
w/photons.	
	
Will	show	that	for	H-atom	or	for	any	atom,	molecule,	solid	–	any	collection	of	atoms	
–	the	angular	momentum	is	quantized	in	units	of	ħ.		   || L

!
can	only		change	by	integer	

number	of	ħ's.	
	
	
	
	
	
	
	

Claim:		 [ ] zyx LiLL ˆˆ,ˆ != 	

			and		 	 	 	 (i,	j,	k	cyclic:	
	 	 	 	 	 x			y			z			or	
	 	 	 	 	 y			z			x			or	
	 	 	 	 	 z			x			y							)	
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To	prove,	need	two	very	useful	identities:	
[ ] [ ] [ ]
[ ] [ ] [ ]BCACBACAB

CBCACBA
,,,
,,,

+=

+=+
	

	

Proof:		 [ ] [ ]=−−= zxyzyx xpzpzpypLL ,, 	

	
	
	
	
	

	
	

zxy Liypxpi !! =−+= )( 	

(Have	used	 [ ] [ ] [ ] [ ] etc.   0   0x,   0   ,,,,,,, ==== yxyx pppyxipx ! 	

I'm	dropping	the	ˆ	over	operators	when	no	danger	of	confusion.	
	
Since	[Lx,	Ly	]	≠	0,	cannot	have	simultaneous	eigenstates	of	 . and yx LL ˆˆ 	
	

	
	
	
	
	

However,	 2222             zyx LLLLLL ++=⋅=
!!

	does	commute	with	Lz.	

		Claim:		 [ ] 02 =zLL , 	

	
	 	 	 	 ,	i	=	x,	y,	or	z	
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=	0		(Note	cancellations)	
	
[L2,	Lz]	=	0	=>	can	have	simultaneous	eigenstates	of	 i)any     (or  22
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Looking	forward	to	H-atom:	
	
	
	

We	will	show	that	 [ ] [ ] 0 0  2 == zLL ˆ,,ˆ, ˆˆ HH 	

=>	simultaneous	eigenstates	of	 zLL ˆ,ˆ,ˆ     2H 	
	

	
	
	
	

	
	
	
	
When	we	solve	the	TISE		(∇2 +V(r)	)ψ	=	E	ψ	for	the	H-atom,	the	natural	coordinates	
to	use	will	be	spherical	coordinates:		r,	θ,	φ		(not	x,	y,	z)	
	
	
	 	 	 	 	 	 	 x	=	r	sin	θ		cos	φ	
	 	 	 	 	 	 	 y	=	r	sin	θ		sin	φ	
	 	 	 	 	 	 	 z	=	r	cos	θ	
	
	
	
	
	
	
	
	

Just	rewriting	∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
	in	spherical	coordinates	is	a	little	ugly.			

But	separation	of	variables	will	give	special	solutions,	energy	eigenstates,	of	form	
	
	
The	angular	part	of	the	solution	Y	(θ,	φ)	will	turn	out	to	be	eigenstates	of	L2,	Lz	and	
will	have	form	completely	independent	of	the	potential	V(	r	).	
	
	 	 	 	 	 *			
	

( ) ( )⋅+∇−= )(ˆ rV
m
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2
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mln      ψψ =

energy	q-nbr	

Lz	q-number	

L2	q-number	
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φ	

θ	 θ̂
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)()()(),()(),,( ϕθϕθϕθψ ΦΘ==        rRYrRr
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Given	only	[L2,	Lz]	=	0	and	 zLL ˆ,ˆ    2 	hermitean	we	know	there	must	exist	
simultaneous	eigenstates	f	(which	will	turn	out	to	be	the	Y	(θ,	φ)	mentioned	above)	
such	that	
	
							 ffLffL z ⋅=⋅= µλ ˆ,ˆ          2 	
(λ	will	be	related	to	l,	and	μ	will	be	related	to	m)	
	
One	can	show	that	f	will	depend	on	quantum-numbers	l,	m,	so	we	write	it	as	flm:	
	
	
«	
	
	
	
	
					    ),( ϕθm

l
m
l Yf = will	be	determined	later.	

	
Notice	max	eigenvalue	of	Lz		(=	lħ	)	is	smaller	than	square	root	of	eigenvalue	of		

( )12 += llL ! 	
	
So,	in	QM,			Lz	<		|	L	|						(Interesting	that	it’s	not	“or	equal	to”!	The	uncertainty	
principle	is	lurking	in	there)		
	
Also	notice	l	=	0,	m	=	0	state	has	zero	angular	momentum	(L2	=	0,	Lz	=	0)	so,	unlike	
Bohr	model,	can	have	electron	in	state	that	is	"just	sitting	there"	rather	than	
revolving	about	proton	in	H-atom.	
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As	we	know	from	earlier	in	the	term,	there	are	2	flavors	of	angular	momentum:	

	
We	started	focusing	on	the	latter,	and	now	we	are	paying	attention	to	the	former.	
But,	they	are	basically	the	same	story,	and	when	you	write	them	as	a	ket	
|l,	m>		you	can	think	of	that	as	exactly	like	|s,m>…		
	
	

m	

0	
ℓ	

1	 2	 3	

2	

-2	

-1	

0	

1	

-1	

0	

1	

0	

+

1.	Orbital		
Ang.	Mom.	
(integer	ℓ	only)	
	

2.	Spin		
Ang.	Mom.	
(integer	or	½	integer	OK)	
	

−
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		mp	>>	me	=>	
	
		proton	(nearly)	
	 stationary	
	

Hamiltonian	of	electron	 )(
ˆˆ rV
m
p

+==
2

2!
H 	

) or  (   4
1  , 
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∇2 ( ) 	

	
TISE:		 ⇒= nnH ψψ   nEˆ special	solutions	(stationary	states).	

 ψn (x, t) =ψn (x)e
−iEnt

! 	

General	Solution	to	TDSE:		 )(),( xectx
tiE

n
n

n

nψ
!

−

∑=Ψ 	

Spherical	Coordinate	System:	
	
	
	 	 	 	 	 	 	 z	=	r	cos	θ	
	 	 	 	 	 	 	 x	=	r	sin	θ		cos	φ	
	 	 	 	 	 	 	 y	=	r	sin	θ		sin	φ	
	 	 	 	 	 	 	 	
	
	
	
	
	
	
		ψ	=	ψ	(r,	θ,	φ)	
	
Normalization:			
	
	
	
Need	 2∇ 	in	spherical	coordinates.		(Work	it	out!)		
	

The	H-	atom	

+ mp	≈	1840	me	

me	
  r!

−

z	
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θ	 θ̂
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1
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∇2 f =

1
r2

∂
∂r

r2 ∂f
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r2 sinθ
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⎝
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⎠
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1
r2 sin2θ

∂2 f
∂φ 2

⎛

⎝
⎜

⎞

⎠
⎟

=   (radial)      +   1
r2   (angular)

	

	
	
	
	 	 	 	 	 *				
In	Classical	Mechanics	(CM),	KE	=	p2	/2m		=		KE		=		
														(radial	motion	KE)	+	(angular,	axial	motion	KE)	
	
	
	
	
	
	
	
	
	 	 	 	 	 *
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Same	splitting	in	QM:	
	

	
	
	

	(Notice	 2L̂ 	depends	only	on	θ,	φ	and	not	r.)	
	

ψψψψ ⋅=+∇
−

= ErV
m

)(ˆ 2
2

2
!H 	

	
	
	
	
Separation	of	Variables!		(as	usual)		Seek	special	solution	of	form:	
	

)()()(),()(),,( ϕθϕθϕθψ Φ⋅Θ⋅=⋅= rRYrRr         	
	
Normalization:		∫	dV	|	ψ	|2	=		
	
	
	
	
	
(Convention:		normalize	radial,	angular	parts	individually)	
	
Plug	ψ		=	R	∙	Y	into	TISE		=>	
	

YREYRVYL
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Multiply	thru	by	
YR
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⋅

− 12
2

2

!
	:	

	

!"!#$%!!!!! "!!!!! #$
%
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1        21 2
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2
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ˆ
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)( =
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⎨
⎧

−−⎟
⎠

⎞
⎜
⎝

⎛ 	

=>		f(r)	=	g	(θ,	φ)		=		constant	C		=		ℓ(ℓ	+	1)	
	
L̂2Y    =    !2  C ⋅Y    =    !2ℓ(ℓ+1)Y      (See Page H-5) 	
	
Have	separated	TISE	into	radial	part	f(	r	)	=		ℓ(ℓ	+	1),	involving	V(	r	),	and	angular	
part			g	(θ,	φ)		=		ℓ(ℓ	+	1)	which	is	independent	of	V(	r	).	
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=>	All	problems	with	spherically	symmetric	potential	(V	=	V(	r	))	have	exactly	same	
angular	part	of	solution:		Y	=	Y(θ,	φ)	called	"spherical	harmonics".	
	
Let’s	focus	first	on	angular	equation:		 mm

l YYL ℓℓℓ" )(ˆ 122 += 						Want	to	solve	for	the	
  s'mYℓ -	"spherical	harmonics".							One	CAN	start	with	commutation	relations,	

	
	and,	using	operator	algebra,	solve	for	the	eigenvalues	of	L2,	Lz.		That	gives	
	
	 	 	 	 where	ℓ	=	0,	½,	1,	3/2,	…	
	 	 	 	 				m		=	-	ℓ	,	-	ℓ	+1	…	+	ℓ	
	
Or,	we	can	use	the	differential	equation	version	in	position	space,	using	

   ( .),ϕθmm YY ℓℓ = 	
It's	easy	to	find	the	φ-dependence:	

  

€ 

ˆ L z =
!
i
∂
∂ϕ

      (showed in HW)

ˆ L zY =
!
i
∂Y
∂ϕ

= !mY   (and you can cancel the !)           
	

Assume				 ⇒ΦΘ=       ( )()),( ϕθϕθY 	
	

⇒Φ=
Φ       im
d
d
ϕ

								

	
If	we	assume	(postulate)	that	ψ	is	single-valued	than			
	
	
				=>		m	=	0,	±	1,	±	2,	…		But	m	=	-	ℓ,	…	+	ℓ		
	
So	for	orbital	angular	momentum,	ℓ	must	be	integer	only:		ℓ	=	0,	1,	2,	…		(we	throw	
out	½		integer	values	when	dealing	with	orbital	angular	momentum,	as	versus	spin!)	
	 	 	 	 	 *						
	 	 	

        

122

mm
z

mm

YmYL

YYL

ℓℓ

ℓℓ

"

ℓℓ"

=

+= )(

           )(  ϕϕ im e+=Φ

          1    )(      )2(  2 =⇒Φ=+Φ πϕϕ im em



 SJP QM 3220 H-Atom 1 

Page H-11 M. Dubson, (typeset by J. Anderson) Mods by S. Pollock  Fall 2008 
 

The	solution	of	the	polar	angle	part	is	somewhat	messy,	so	I	just	summarize		
some	results:		
Normalization	from	

2
  sin  ∫ ∫ mYdd ℓθϕθ 	

			
Notice	case	ℓ	=	0	 :	
																					
	
	
	
Example:			
	
	
	
	
	
	
	
																						
	
Convention	on	±	sign:		 ( )*)( mmm YY ℓℓ 1−=− 	
	
The	spherical	harmonics	form	a	complete,	orthonormal	set	(since	eigenfunctions	of	
hermitean	operators)	
	
	
Completeness:		
Any	function	of	angles	f	=	f	(θ,	φ)	can	be	written	as	linear	combo	of	  s'mYℓ :	
	
	
	
	
	
Likewise	(when	we	get	to	the	radial	part):		 ''''

*)( ℓℓℓℓ δδnnnn RRrdr =∫
∞ 2

0
 	

	
=>	H-atom	energy	eigenstates	are		
	
												     e            imϕϕθϕθψ mn

m
nmn RYrRr ℓℓℓℓℓ Θ== ),()(),,( 	

	
n	=	1,	2,	…		;		ℓ	=	0,	1		…		(n-1)	;		m	=	-ℓ	…	+	ℓ	
	
We	haven’t	talked	about	the	radial	part	yet,	so	let’s	go	there:		

π4
1 const 0

0 ==Y

∫∫∫ =Ω= ) 4   (since
2

00

πθϕθ
ππ

ddd sin

ϕθ
π

ieY +−= sin
8
31

1

θ
π
cos

4
3  0

1 =Y

ϕθ
π

ieY −− += sin
8
31

1

mm'        δδ '
'
'

*)( ℓℓℓℓ =Ω∫ mm YYd

m

m
Yf ℓ

ℓ

ℓℓ
∑∑
+

−=

∞

=

=
0

    ),( ϕθ
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McIntyre	Ch8:	The	radial	part!		
	

Radial	SE:		 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−× R

mr2
  

2! 	

	

)()( 1
2

        
2 2
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=−⋅+⎟
⎠

⎞
⎜
⎝

⎛−
ℓℓ

""
mr
rREVRr

dr
dRr

dr
d

mr
	

	
Change	of	variable:		u	(r)		=		r	∙	R(r)	
		
	
	
	

Can	show	that	 :     1
2

2
2

dr
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dRr

dr
d

r
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⎞
⎜
⎝

⎛ 	
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Rdr
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dr
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dRrR
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++=+= , 						

	

  221  1
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2

2

2
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⎠

⎞
⎜⎜
⎝

⎛
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⎜
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Notice:	identical	to	1D	TISE:	

        V     
2 2

22

ψψ
ψ E
dr
d

m
=⋅+

−! except	

	
r:	0		->	∞	instead	of	x:	-	∞	->	+	∞	and	

V(x)	replaced	with														  1 
2

    2

2

)()( ++= ℓℓ
"
mr

rVVeff 	

Veff		=	"effective	potential"	
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Seek bound 
state 
solutions E < 0 

E > 0 solutions are 
unbound states, 
scattering solutions  

Boundary	conditions:	u	(	r	=	∞	)	=	0	from	normalization	∫	dr	|	u	|2	=	1	

u	(	r	=	0	)		=	0,			otherwise	
r
uR = 	blows	up	at	r=0		(subtle!)		

		 2  
r
B

r
AV

r
ArV eff +−=−= ,)( 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
Full	solution	of	radial	SE	is	very	messy,	even	though	it	is	effectively	a	1D	problem	
(different	problem	for	each	ℓ	)	
	
Power	series	solution	(see	text	for	details).		Solutions	depend	on	2	quantum	
numbers:	n	and	ℓ	(for	each	effective	potential	ℓ	=	0,	1,	2,	…	have	a	set	of	solutions	
labeled	by	index	n.)	
	
Solutions:		n	=	1,	2,	3,	…	 	 for	given	n	
	 						ℓ	=	0,	1,		…	(n	-	1)	 												ℓmax	=	(n	–	1)	
	
n	=	"principal	quantum	number"	
	
energy	eigenvalues	depend	on	n	only	(it	turns	out)	
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		•	same	as	Bohr	model,	agrees	with	experiment!	
	

Notice that energy 
eigenvalues given by 
solution to radial 
equation alone. r

Veff

ℓ=2

ℓ=1

≈ -1/r

E

ℓ=0

≈ +1/r2
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First	few	solutions:		Rnℓ	(r)	
	
														normalization								"Bohr	radius"													
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NOTE:	
	
		•	for	ℓ	=	0	(s	states),	R	(r	=	0)	≠	0		=>	wavefunction	ψ	"touches"	nucleus.	
	
		•	for	ℓ	≠	0	,	R	(r	=	0)	=	0		=>	ψ	does	not	touch	nucleus.	
	
ℓ	≠	0	=>	electron	has	angular	momentum.		Same	as	classical	behavior,	particle	with	
non-zero	L	cannot	pass	thru	origin	 ):( ∞=⇒=×= prprL 0!!!

	
	
Can	also	see	this	in	QM:		for	ℓ	≠	0,	Veff	has	infinite	barrier	at	origin	=	>	u(r)	must	
decay	to	zero	at	r=0	exponentially.	

	
	
=>	exponential	decay	in		

						
r
rurR )()( = 	as	well.	

	
	
	

	
Completeness:	any	arbitrary	(bound)	state	is	
	
	 	 (c's	are	any	complex	constants)	
	
energy	of	state	(n,	ℓ,	m)	depends	only	on	n.	
	
			En	=	-	constant/n2				(states	ℓ,	m	with	same	n	are	degenerate)	
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Degeneracy	of	nth	level	is	
n2		
(2•n2	if	you	include	spin)	

ℓ	=	

n=	
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Prob	(find	particle	in	dV	about	   r! )	=	 dVr 2)(!ψ 	

If	ℓ	=	0	,	ψ	=	ψ(r)	then	 222 4 )(rrdrdV ψπψ ∫∫ = 	
	
Prob	(find	in	r	→	r	+	dr)	=		
	
P(r)	=	radial	probability	density	

Ground	state:		 0     100
a
r

Ae
−

=ψ 	

0
2

22 4|    (r) a
r

erAP
−

= π| 	
	
Notice	P(r)	very	different	from	ψ(r):	

	
	
	
	
	
	
	
	

If	ℓ	≠	0	,	ψ	=	ψ	(r,	θ,	φ)	=	R(r)	Y(θ,	φ),	then	
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Prob	(find	in	r	→	r	+	dr)	=	r2		|R|2		dr	
	
	 	 	 even	if	ℓ	≠	0	
	
	
Note:	 if		
	
			
	

Radial	Probability	Density	
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H-atom	and	emission/absorption	of	radiation:	
	
If	H-atom	is	in	excited	state	(n	=	2,	ℓ	=	1,	m	=	0)	then	it	is	in	energy	eigenstate	=	
stationary	state.		If	atom	is	isolated,	then	atom	should	remain	in	state	ψ210	forever,	
since	stationary	state	has	simple	time	dependence:	
	
	
But,	experimentally,	we	find	that	H-atom	emits	photon	and	de-excites:		ψ210	->	ψ100	
in	≈	10-7	s	->	10-9	s	

	
The	reason	that	the	atom	does	not	remain	in	stationary	state	is	that	it	is	not	truly	
isolated.		The	atom	feels	a	fluctuating	EM	field	due	to	"vacuum	fluctuations".		
Quantum	Electrodynamics	is	a	relativistic	theory	of	the	QM	interaction	of	matter	
and	light.		It	predicts	that	the	"vacuum"	is	not	"empty"	or	"nothing"	as	previously	
supposed,	but	is	instead	a	seething	foam	of	virtual	photons	and	other	particles.		
These	vacuum	fluctuations	interact	with	the	electron	in	the	H-atom	and	slightly	alter	
the	potential	V(r).		So	eigenstates	of	the	coulomb	potential	are	not	eigenstates	of	the	
actual	potential:				Vcoulomb	+	Vvacuum		
Photons	possess	an	intrinsic	angular	momentum	(spin)	of	1	ħ,	meaning		
	
	
	
	
So	when	an	atom	absorbs	or	emits	a	single	photon,	its	angular	momentum	must	
change	by	1	ħ,	by	Conservation	of	Angular	Momentum,	so	the	orbital	angular	
momentum	quantum	number	ℓ	must	change	by	1.	
	
"Selection	Rule":		∆ℓ	=	±	1	in	any	process	involving	emission	or	absorption	of	1	
photon			=>	allowed	transitions	are:	
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If	an	H-atom	is	in	state	2s	(n	=	2,	ℓ	=	0)	then	it	cannot	de-excite	to	ground	state	by	
emission	of	a	photon.		(since	this	would	violate	the	selection	rule).		It	can	only	lose	
its	energy	(de-excite)	by	collision	with	another	atom	or	via	a	rare	2-photon	process.	
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