Phys 3310, HW \#6, Due in class Wed Feb 27.

Q1. UNIQUENESS THEOREM

Griffiths section 3.1.6 is a discussion and proof of the "Second uniqueness theorem".
Read through that theorem (and his proof), make sense of it! Then for this homework
problem, prove it yourself, using a slightly different method than what Griffiths does (though you may find some common "pieces" are involved!) Do it like this:
Go back to Green's Identity (stated in Problem 1.60c, p. 56, you may recognize this from our HW\#2) This identity is true for ANY choice of T and U, so let the functions T and U in that identity both be the SAME function: specifically, you should set them both equal to $\mathrm{V}_{3}=\mathrm{V}_{1}-\mathrm{V}_{2}$. Then, Green's Identity (along with some arguments about what happens at the boundaries, rather like Griffith's uses in his proof) should let you quickly show that E_{3} (which is defined to be the negative gradient of V_{3}, as usual) must vanish everywhere throughout the volume. QED.
Understand the game. We are checking if there are two different potential functions, V_{1} and V_{2}, each of which satisfies Laplace's equation throughout the region we're considering. You construct (define) V_{3} to be the difference of these, and you prove that V_{3} (or in this case, $E_{3}=-\nabla V_{3}$) must vanish everywhere in the region. Which means there really is only one unique E-field throughout the region after all! This is another one of those "formal manipulation" problems, giving you a chance to practice with the divergence theorem and think about boundary conditions...

Q2. METHOD OF IMAGES - spherical

Take a look at Griffiths' Fig 3.12, which shows a grounded metal sphere with a charge q outside it. He argues (leading up to Eq. 3.17) that there is a simple "method of images" trick available here - you just have to put the right charge (q^{\prime}) at the right spot (b, inside the radius of the sphere). Your task:
i) Solve Griffiths' problem 3.7a (p. 126)
(which shows WHY this particular "image trick" works for a spherical conductor)
ii) Solve Griffiths' problem 3.7b
iii) Now let's apply this result to a novel situation:

Imagine a grounded infinite conducting plane in the $x-y$ plane, that has a (conducting) hemispherical bump (radius R) in it, centered at the origin, as shown.
A charge q sits a distance " a " above the plane, i.e. at the point ($0,0, \mathrm{a}$)
I claim that you can find the potential V anywhere in the plane above the conductor using the method of images, with three image charges.

Where should they be? (Explain your reasoning- you need to ensure the boundary condition $\mathrm{V}=0$ on the entire conductor.) Is it now easy for you to construct a formula for V at any point above the plane?

Phys 3310, HW \#6, Due in class Wed Feb 27.
Q3. SEPARATION OF VARIABLES - CARTESIAN 2-D
A square rectangular pipe (sides of length a) runs parallel to the z -axis (from $-\infty$ to $+\infty$) The 4 sides are maintained with boundary conditions given in the figure. (Each of the 4 sides is insulated from the others at the corners) i) Find the potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ at all points in this pipe.
ii) Sketch the E-field lines and equipotential

contours inside the pipe. (Also, state in words what the boundary condition on the left wall means - what does it tell you? Is the left wall a conductor?)
iii) Find the charge density $\sigma(x, y=0, z)$ everywhere on the bottom conducting wall $(y=0)$.

Q4. SEPARATION OF VARIABLES - CARTESIAN 3-D
You have a cubical box (sides all of length a) made of 6 metal plates which are insulated from each other.
The left wall is located at $x=-a / 2$,the right wall is at $x=+a / 2$. Both left and right walls are held at constant potential $\mathrm{V}=\mathrm{V}_{0}$. All four other walls are grounded.
(Note that I've set up the geometry so the cube runs from
$\mathrm{y}=0$ to $\mathrm{y}=\mathrm{a}$, and from $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{a}$, but from $\mathrm{x}=-\mathrm{a} / 2$ to $\mathrm{x}=+\mathrm{a} / 2$
This should actually make the math work out a little easier!)

Find the potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ everywhere inside the box.
(Also, is $V=0$ at the center of this cube? Is $\mathrm{E}=0$ there? Why, or why not?)

Q5. SEPARATION OF VARIABLES - SPHERICAL

The potential on the surface of a sphere (radius R) is given by $\mathrm{V}=\mathrm{V}_{0} \cos (2 \theta)$.
(Assume $\mathrm{V}(\mathrm{r}=\infty)=0$, as usual. Also, assume there is no charge inside or outside, it's ALL on the surface!)
i) Find the potential inside and outside this sphere.
(Hint: Can you express $\cos (2 \theta)$ as a simple linear combination of some Legendre polynomials?)
ii) Find the charge density $\sigma(\theta)$ on the sphere.

Extra Credit: CHARGED METAL SPHERE

You have a conducting metal sphere (radius R), with a net charge +Q on it.
It is placed into a pre-existing uniform external field $\mathbf{E} 0$ which points in the z direction. (So, this is exactly like Griffiths Example 3.8, except the sphere is not neutral to start with.) Find the potential everywhere inside and outside this sphere. Please explain clearly where you are setting the zero of your potential. Do you have any freedom in this matter? Briefly, explain.

