COULOMB'S LAW, E FIELDS
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Coulomb's law: $\overrightarrow{\mathbf{F}}($ by 1 on 2$)=\frac{k q_{1} q_{2}}{\mathfrak{R}_{12}^{2}} \hat{\mathfrak{R}}_{12}$ In the fig, q1 and q2 are 2 m apart. Which arrow can represent $\hat{\mathfrak{R}}_{12}$?

D) More than one (or NONE) of the above
E) You can't decide until you know if q1 and q2 are the same or opposite signed charges

What is $\hat{\mathfrak{R}}_{12}$ ("from 1 to 2") here?
$\underset{+\mathrm{q})}{\mathbf{r}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)} \xrightarrow[\hat{A}=\vec{A} /|A|]{\stackrel{\overparen{R}}{12}=\mathbf{r}_{2}-\mathbf{r}_{1}} \xrightarrow[\mathbf{r}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)]{-\mathrm{q}}$
$\begin{array}{ll}\text { A) }\left(\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}\right) & \text { B) }\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}\right)\end{array}$
C) $\left(\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}\right) / \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
\qquad
D) $\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}\right) / \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
E) None of these/it depends/not sure...

Two charges $+Q$ and $-Q$ are fixed a distance r apart. The direction of the E field at A is...
A.Up
B.Down
C.Left
D.Right
E.Some other direction, ${ }^{-\mathrm{Q}} \uparrow$
 or $E=0$, or it's ambig. (depends on sign of q you put at $A!$)

Two charges $+Q$ and $-Q$ are fixed a distance r apart. The direction of the force on a test charge $-q$ at A is...
A.Up
B.Down
C.Left
D.Right
E.Some other direction, or $F=0$

5 charges, q, are arranged in a \qquad regular pentagon, as shown.
What is the E field at the center?
\qquad

A) Zero $\quad \dot{q} \quad$ q
B) Non-zero
C) Really need trig and a calculator to decide

1 of the 5 charges has been removed, as shown. What's the E field at the center?
A) $+\left(k q / a^{2}\right) j$
B) $-\left(k q / a^{2}\right) j$

C) 0
D) Something entirely different!
E)This is a nasty problem which I need more time to solve

There is a uniform electric field in a \qquad region of empty space (shown at evenly spaced points) Which of the \qquad following could be a depiction of the electric field in this region of space?

A.I only
B.II only
C.I or II
D.Neither
\qquad
\qquad
\qquad
\qquad
\qquad

There is a uniform electric field in a \qquad region of empty space.
What distribution of charges could create such a field?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

There is an electric field in a region of empty space (shown below at selected points).
What is the electric field at point x ?
A. Up
B. Zero
C. Something else!?

To find the E- field at P from a thin line (uniform linear charge density λ):
$\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\Re} \hat{\Re} \lambda \mathrm{dl}^{\prime}$ what is \mathfrak{R} ?
A) x
B) y^{\prime}

C) $\sqrt{d l^{2}+x^{2}}$
D) $\sqrt{x^{2}+y^{2}}$
E) Something completely different!!
$\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\int \frac{\lambda \mathrm{dl}^{\prime}}{4 \pi \varepsilon_{0} \Re^{3}} \vec{\Re}$, so $\quad \mathbf{E}_{x}(x, 0,0)=\frac{\lambda}{4 \pi \varepsilon_{0}} \int \ldots$
A) $\int \frac{d y^{\prime} x}{x^{3}}$
B) $\int \frac{d y^{\prime} x}{\left(x^{2}+y^{\prime}\right)^{3 / 2}}$
C) $\int \frac{d y^{\prime} y^{\prime}}{x^{3}}$

D) $\int \frac{d y^{\prime} y^{\prime}}{\left(x^{2}+y^{\prime}\right)^{2 / 2}}$
E) Something else...

To find the E - field at P from a thin ring (radius R, uniform linear charge density λ):
$\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\mathfrak{R}} \hat{\mathfrak{R}} \lambda \mathrm{dl}^{\prime}$
what is $\overrightarrow{\mathfrak{R}}$?

E) NONE of the arrows shown \qquad correctly represents \mathfrak{R}

To find the E - field at P from a thin \qquad ring (radius R, uniform linear charge density λ): \qquad
$\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\mathfrak{R}^{2}} \hat{\mathfrak{R}} \lambda \mathrm{dl} \mathrm{\prime} \quad \mathrm{P}_{\mathrm{P}}=(0,0, z)$
what is \mathfrak{R} ?
A) $\sqrt{R^{2}+z^{2}}$

B) R
$\begin{array}{ll}\text { C) } \sqrt{d l^{2}+z^{2}} & \text { D) } z\end{array}$
E) Something completely different!!

To find \mathbf{E} at P from a sphere (radius R , uniform volume charge density ρ) using
$\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\mathfrak{R}^{2}} \hat{\Re} \rho \mathrm{~d} \tau^{\prime}$ what is $\overrightarrow{\mathfrak{R}}$ (given the small

\qquad

Griffiths p. 63 finds E a distance z from a line segment with charge density λ :

$$
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda L}{z \sqrt{z^{2}+L^{2}}} \hat{\mathbf{k}} \quad \underset{+L}{\stackrel{(0,0, z)}{+L}} x
$$

What is the approx. form for E, if $z \ll L$?
$E=\frac{2 \lambda}{4 \pi \varepsilon_{0}} \cdot(\ldots)$
A) 0
B) 1
C) $1 / 2$
D) $1 / z^{\wedge} 2$
E) None of these is remotely correct.

Which is true about |E| at points on the imaginary dashed triangle?

\qquad
\qquad
\qquad
\qquad
A. $|E|$ is the same everywhere (uniform) in (I) ONLY
B. $|\mathrm{E}|$ is uniform in (II) ONLY
C. Uniform in both, but different for cases I and II
D. Uniform in both, and same for cases I and II.
E. |E| varies from point to point in both cases

Which of the following are vectors?
(I) Electric field
(II) Electric flux
(III) Electric charge
\qquad
A) (I) only
B) (I) and (II) only
C) (I) and (III) only
D) (II) and (III) only
E) (I), (II), and (III)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

You have an E field given by
$\mathbf{E}=\mathrm{c} \mathbf{r}, \quad$ (Here $\mathrm{c}=$ constant, $r=$ spherical radius vector)

What is the charge density $\rho(\mathrm{r})$?
A) c
B) cr
C) 3 c
D) $3 \mathrm{cr} \mathrm{r}^{2}$
E) None of these is correct

```
Given E=c r,
(c = constant, r= spherical radius vector)
We just found \rho(r)=3c.
What is the total charge Q enclosed by an
imaginary sphere centered on the origin,
of radius R?
Hint: Can you find it two DIFFERENT ways?
```

A) $(4 / 3) \pi c$
B) $4 \pi \mathrm{c}$
C) $(4 / 3) \pi c R^{\wedge} 3$
D) $4 \pi c R^{\wedge} 3$

```
E) None of these is correct
```

\qquad

The space in and around a cubical box (edge length L) is filled with a constant uniform electric field, $\vec{E}=E \hat{y}$. What is the TOTAL electric flux $\oint \vec{E} \cdot d \vec{a}$ through this closed surface?
A.Zero
B.EL²
C.2EL²
D.6EL²

E.We don't know $\rho(\mathrm{r})$, so can't answer.

A Gaussian surface which is not a sphere has a single charge (q) inside it, not at the center. There are more charges outside. What can we say about total electric flux through this surface $\oint \vec{E} \cdot d \vec{a} \quad$?
A) It is $q / \varepsilon 0$
B) We know what it is, but it is NOT $q / \varepsilon 0$
C) Need more info/details to figure it out.

A point charge (q) is located at position \mathbf{R}, as shown. What is $\rho(r)$, the charge density in all space?
A) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{R}})$
B) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{r}})$

C) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{R}})$
D) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{R}}-\overrightarrow{\mathbf{r}})$
E) None of these

The flux through the pillbox surface
is...

A: - EA
B: +2 EA
C: $\left(-2 A+L \pi r^{2}\right) E$
D: $L \pi r^{2} E$
E : None of these
\qquad
\qquad

A spherical shell has a uniform positive charge density on its surface. (There are no other charges around) \qquad
What is the electric field inside the sphere?

A: $E=0$ everywhere inside
B : E is non-zero everywhere in the sphere
 C : $\mathrm{E}=0$ only at the very center, but ${ }^{+}$ non-zero elsewhere inside the sphere.
D: Not enough info given

A cubical non-conducting shell has a uniform positive charge density on its surface. (There are no other charges
\qquad around) What does Gauss' law tell us about the E field inside the cube?

A: $E=0$ everywhere inside
B : E is non-zero everywhere in the cube

C: $\mathrm{E}=0$ only at the very center, but non-zero elsewhere inside the cube.
D: Not enough info given

The surface of a thin-walled insulating cubical box is given a uniform surface charge. What can be inferred about the E field everywhere INSIDE the box, using Gauss' Law?
A) |E| everywhere is zero
B) $|E|$ everywhere must be uniform but non-zero
C) Direction of E everywhere must be radially out from the center of the box
D) Direction of E everywhere must be perpendicular to one of the sides
E) None of the above

Now we add a single extra charge Q just outside the sphere (fixing all the other charges exactly as they were)
What is the electric field inside the sphere?
A: 0 everywhere inside
B: non-zero everywhere
 in the sphere
C: Not enough info given

A point charge $+q$ sits outside a solid \qquad neutral copper sphere of radius A.
What is the magnitude of the E-field at \qquad the center of the sphere?

A) $|E|=k q / r^{2}$
B) $|E|=k q / A^{2}$
C) $|E|=k q /(r-A)^{2}$
D) $|E|=0$
E) None of these

In which of the following can E (anywhere) \qquad be calculated easily from Gauss' Law?

A. (I) only
B. (II) only
C. (I) and (II) only
D. (I) and (III) only
E. (I), (II) and (III)
I. insulating sphere $\mathrm{w} /$ uniform volume charge
II. insulating dumbbell $\mathrm{w} /$ uniform volume charge
III. same as (II) but only one sphere charged

For which of these Gaussian surfaces will Gauss' law help us to calculate E at point A due to the sheet of charge? Point A is at the top center of each Gaussian surface.

A) Only the sphere B) Only the cylinder
C) Only the cylinder and the cube
D) Only the sphere and the cylinder
E) All surfaces will work

A dipole sits near the origin. We draw an imaginary Gaussian sphere (radius r) around it.
Gauss' law says: $\oint_{\text {suf }} \vec{E} \cdot d \vec{a}=\frac{Q_{\text {isside }}}{\varepsilon_{0}}$
Do we conclude that $\mathrm{E}=0$ everywhere around that sphere?
A)Yes, $E=0$ everywhere
B) No, E is not 0 at all
 points on that sphere.
\qquad
\qquad

We have a large copper plate with uniform surface charge density σ. Imagine the Gaussian surface drawn below. Calculate the E-field a distance s above the conductor surface.
A) $|E|=\sigma / \varepsilon_{0}$
B) $|E|=\sigma / 2 \varepsilon_{0}$
C) \mid ㅌ $=\sigma / 4 \varepsilon_{0}$
D) \mid EI $=\left(1 / 4 \pi \varepsilon_{0}\right)\left(\sigma / s^{2}\right)$
E) $|E|=0$

You have two hollow insulating spheres: (I) +6 Q distributed uniformly on its surface
(II) 6 point charges $+Q$ arranged equidistant from one another on the sphere.
What is true about |E| INSIDE the spheres?
A. $|\mathrm{E}|=0$ everywhere in both
B. non-zero everywhere in both
C. 0 in (II), but varies in (I)
D. 0 in (II), but uniform and non-zero in (I)
E. None of the above

6 point charges $+Q$ are put on a hollow insulating sphere. Shown are a spherical and cubic Gaussian surface concentric with the sphere. Which of the following are true?

(I) E constant on the cubic Gaussian surface
(II) E constant on the spherical Gaussian surface
(III) E radially outward on spherical Gaussian surface
A) I only B) II only C) III only D) II + III only E) other

Three thin-walled insulating objects have net charge $+Q$ uniformly distributed on their surfaces. We can use Gauss' law to find E at a point outside due to:

Cube with Uniform
Surface Charge

Sphere with Uniform
Surface Charge

A) cube only B) sphere only
C) Sphere and cylinder only
D) Sphere and cube only
E) All three objects

Which of the following are true?

(I) If $E=0$ at every point on a Gaussian surface, Φ_{E} through the surface must be zero
(II) If there is no charge enclosed inside a Gaussian surface, E everywhere on the surface must be zero
(III) If $\Phi_{E}=0$ through a Gaussian surface, E everywhere on the surface must be zero
A) I only
B) II only
C) I and II only
D) I and III only
E) II and III only

4 Gaussian surfaces are coaxial with an infinitely long line of charge with uniform λ.
Choose all surfaces through which $\Phi_{E}=\lambda L / \varepsilon_{0}$

A) I only
B) I and II only
C) I and III only
D) I, II, and III only
E) All four.

4 Gaussian surfaces are coaxial with an infinitely long line of charge with uniform λ. Choose all surfaces which can be used to find E at point P using Gauss' law

A) I only
B) I and II only
C) I and III only
D) I, II, and III only
E) All four.

A point charge $+Q$ is near a thin hollow insulating sphere (radius L) with charge +Q uniformly distributed on its surface.
What is true of E (point A) and $E(B)$?

A) $E(A)=0, E(B)<>0$
B) $E(A)<>0, E(B)=0$
C) Both nonzero
D) Both 0
E) ??

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
POTENTIAL
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The formula for E field is $\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}$ (with $\vec{\Re}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)$)
\qquad

However, it turns out (check!) that $\frac{\hat{\Re}}{\Re^{2}}=-\nabla \frac{1}{|\Re|}$
\qquad where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$

Question: is the following mathematically ok?
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \rho\left(\mathbf{r}^{\prime}\right)\left(-\nabla \frac{1}{|\Re|}\right) d \tau^{\prime}=-\nabla \frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\mathfrak{R}|} d \tau^{\prime}$
A) Yes
B) No
C) ???

Which of the following electric fields could exist in a finite region of space that contains no charges?
(a) $\operatorname{Axyz}(\hat{i}+\hat{j})$
(b) $A(2 x y \hat{i}-x z \hat{k})$
(c) $A(x z \hat{i}-x z \hat{j})$
(d) $A(-x y \hat{j}+x z \hat{k})$
(e) $A(+x y \hat{j}+x z \hat{k})$

Could this be a plot of $|E|(r)$? Or $V(r)$? (for SOME physical situation?)
A) Could be $E(r)$, or $V(r)$
B) Could be $E(r)$, but can't be $V(r)$
C) Can't be $E(r)$, could be $V(r)$
D) Can't be either
E) ???

| Could this be a plot of \|E|(r)? Or $V(r)$? |
| :--- |
| (for SOME physical situation?) |
| A) Could be $E(r)$, or $V(r)$ |
| B) Could be $E(r)$, but can't be $V(r)$
 C) Can't be $E(r)$, could be $V(r)$
 D) Can't be either E) ??? |

\qquad

Given a sphere with uniform surface charge density σ what can you say about the potential V inside this sphere? (Assume as usual, $\mathrm{V}(\infty)=0$)
A) $V=0$ everywhere inside
B) $V=$ non-zero constant everywhere inside
C) V must vary with position, but is zero at the center.
D) None of these.

Why is $\int \vec{E} \cdot d \vec{l}=0$ in electrostatics?
a) Because $\nabla \mathrm{X} \vec{E}=0$
b) Because E is a conservative field
C) Because the potential between two points is independent of the path
d) All of the above
e) NONE of the above - it's not true!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Three identical charges +q sit on an equilateral triangle.
What would be the final KE of the top charge if you released all three?
A) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{a}$
B) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{3 a}$
C) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{a}$
D) $\frac{1}{4 \pi \varepsilon_{0}} \frac{3 q}{a}$
E) other/not sure

CAPACITORS
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Given a pair of very large, flat, conducting capacitor plates (with surface charge densities +/- σ) what is the E field in the \qquad region between the plates?
A) $\sigma / 2 \varepsilon_{0}$
B) σ / ε_{0}
C) $2 \sigma / \varepsilon_{0}$
D) $4 \sigma / \varepsilon_{0}$
E) Something else/ not determined

