Part 1 - Potential from a Line of Charge
A uniform line charge density λ extends from the origin to the point ($0,0,-\mathrm{d}$).
i. Using the script-r technique from earlier in the course, find an expression for the potential anywhere along the z -axis, $\mathrm{V}(\mathrm{z})$.

Remember:
$V=\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\rho\left(\vec{r}^{\prime}\right) \cdot d \tau^{\prime}}{\vec{r}-\vec{r}^{\prime}}$

Your answer to part (i.) should have been: $V(z)=\frac{\lambda}{4 \pi \varepsilon_{o}} \ln \left(1+\frac{d}{z}\right)$. (If you didn't get this, find out where you went wrong.) At large $z(z \gg d)$ the potential can be written: $V(z)=\frac{\lambda}{4 \pi \varepsilon_{o}} \ln (1+\varepsilon)$.
ii. Expand the potential, $\mathrm{V}(\mathrm{z})$, into a Taylor series. Find the first two non-zero terms.

Taylor expansion about the point $x=x_{o}$:
$f\left(x_{o}+\varepsilon\right)=\frac{f\left(x_{o}\right)}{0!} \varepsilon^{0}+\frac{f^{\prime}\left(x_{o}\right)}{1!} \varepsilon^{1}+\frac{f^{\prime \prime}\left(x_{o}\right)}{2!} \varepsilon^{2}+\ldots$

Part 2 - Separation of Variables
i. This problem does not have spherical symmetry. Could the potential have the form: $V(r, \theta)=\sum_{l}\left(A_{l} \cdot r^{l}+\frac{B_{l}}{r^{l+1}}\right) \cdot P_{l}(\cos \theta)$? If so, in what regions could the solution look like this?
ii. Assuming the potential can have the form $V(r, \theta)=\sum_{l}\left(A_{l} \cdot r^{l}+\frac{B_{l}}{r^{l+1}}\right) \cdot P_{l}(\cos \theta)$ in the region you specified above, find the two leading non-zero A's and/or B's. Do any terms vanish? Keep in mind that this potential is the same potential you solved by integrating in part 1 , so when $\theta=0$ (the z-axis), the answers must match.

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} \\
& P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x
\end{aligned}
$$

Week 7

Part 3 - Multipole expansion
A potential can be expanded into the form:

$$
V=\frac{1}{4 \pi \varepsilon_{o}}\left(\frac{\text { "monopole" }}{r}+\frac{\text { "dipole" }}{r^{2}}+\frac{\text { "quadrapole" }}{r 3}+\ldots\right)
$$

i. For this problem, what are the monopole and dipole moments? Do these answers make sense physically?
ii. Which terms would change if the charge distribution were shifted up by $\mathrm{d} / 2$, so that it was centered on the origin?

