Part 1 - Sketching Vector Potential

One of Maxwell's equations, $\nabla \times \vec{E}=0$, allowed us to define a scalar potential V, where $\vec{E}=-\nabla V$. Similarly, another one of Maxwell's equations allows us to define the vector potential, \mathbf{A}.
i. Which Maxwell equation does \mathbf{A} come from? How does it lead to \mathbf{A} ?
ii. What current density \mathbf{J} would create the \mathbf{B}-field in Figure 2 below? Can you write an explicit mathematical formula for it?
iii. Notice that the equations defining \mathbf{A} are mathematically analogous to Maxwell's

$$
\begin{array}{lll}
\text { equations for } \mathbf{B}: & \nabla \bullet \overrightarrow{\mathbf{B}}=0 & \Leftrightarrow \nabla \bullet \overrightarrow{\mathbf{A}}=0 \\
& \nabla \times \overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{J}} & \Leftrightarrow \nabla \times \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}
\end{array}
$$

First, sketch \mathbf{B} in Figure 1. Then, using the mathematical similarities above, sketch \mathbf{A} in Figure 2:

Side view:
Side view:

$$
\vec{J}(s \leq a, \phi, z)=J_{o} \hat{z}
$$

$$
\stackrel{\rightharpoonup}{B}(s \leq a, \phi, z)=B_{o} \hat{z}
$$

Figure 1: Given \mathbf{J}, sketch the \mathbf{B} field.

Figure 2: Given B, sketch the A field.
iv. One way to check your previous answer (conceptually) is using an Ampere's Law analogy. Ampere's Law tells you that the \mathbf{J}-flux (or $\mathrm{I}_{\text {encl }}$) is equal to $\oint \vec{B} \bullet d \vec{l}$. What is a similar relationship between the vector potential and magnetic field?

Try using this "Ampere's Law analogy" to (conceptually) check your sketch of A.
v. A toroidal inductor looks like a doughnut wrapped with wire. Indicate the direction of \mathbf{J}, then sketch \mathbf{B} and \mathbf{A} for the toroidal inductor.

Part 2 - Calculating Vector Potential

On last week's homework, you calculated the magnetic field produced by a uniform surface current:

$K(z=0)=K_{o} \hat{x}$. The answer you should have calculated is:
$\vec{B}(z>0)=\frac{-\mu_{o} K_{o}}{2} \hat{y} \quad \vec{B}(z<0)=\frac{+\mu_{o} K_{o}}{2} \hat{y}$
i. Can you think of physical situation(s) that can be modeled by each of the four labeled figures in this Tutorial?
ii. Sketch your best guess of what \mathbf{A} looks like for the uniform surface current. Which components (x, y, or z) does A have (it might help to look at relationship between \mathbf{A}, \mathbf{B}, and \mathbf{J} in the two examples in Part 1)? Which variables (x, y, or z) does \mathbf{A} depend on?

iii. Using your assumptions for which components \mathbf{A} has, and which variables \mathbf{A} depends on, calculate (or guess) what \mathbf{A} is.

Does your sketch of A resemble the answer you calculated (or guessed)?

