
Phys 3310, HW #14, Due in class Wed Apr 24 
 
Q1. COORDINATE FREE FORMULA  
At the end of Ch 5, Griffiths gives a formula for the magnetic moment of a pure dipole which 
points in the z direction, located at the origin:    

B = µ0m

4πr3
(2cosθ r̂ + sinθ θ̂ )     (Eq 1)  

Here m=Ia  (a is the area vector of our tiny dipole) But sometimes m points in another direction 
than just z-hat! A more elegant way to write B which does not explicitly depend on any choice 

of coordinate axes is:  

B = µ0

4πr3
(3(

m ⋅ r̂)r̂ −


m)     (Eq 2)  

For this problem, assume Eq. 2 above is correct, define your z-axis to lie along the direction of 
the magnetic moment m, and show that this leads back to Eq 1.    
Coordinate free formulas are nice, because now you can find B for more general situations!   
 
Q2.  A thin uniform solid torus (a “donut” ) has total charge Q , mass M. 
It rotates around its own central axis at angular frequency ω, as shown. 

A) Find the magnetic dipole moment m of this rotating donut.  
 - What are the SI units of dipole moment?  
 - Compute the ratio m/L, the “magnetic dipole moment” divided by the angular momentum. 
This is called the “gyromagnetic ratio”.  
- What is the gyromagnetic ratio for a uniform spinning sphere?  
HINT: This last question really doesn’t require any additional calculating: picture the sphere 
as a bunch of rings, and apply the result of part A 

B) In quantum mechanics, the angular momentum of a spinning electron is  / 2 . Use your 
results above to deduce the electron’s magnetic dipole moment (in SI units.) 
 
Note: This “semi-classical” calculation is low by a factor of almost exactly 2. Dirac developed 
a relativistic form of quantum mechanics which got the factor of 2 right in the 1930’s. In the 
‘40’s,  Feynman, Schwinger, and Tomonaga calculated tiny extra corrections arising from QED 
(Quantum electrodynamics) For fun, find the current best-value for the electron magnetic 
dipole moment. If you compare theory and measurement, you will be extremely impressed at the 
agreement (~12 digits!)  It may make you "believe" in quantum physics in a way you might not 
have before! That’s not how it works in practice though- people use this measurement to extract 
a fundamental constant of nature, and then use that value to predict OTHER experiments.  
 
Q3.  FORCE BETWEEN MAGNETS. 
A) Toy magnets seem to have a force law which "turns on" quite suddenly 
as they approach, it doesn't really feel like a 1/r2 force. That's because it is 
not!  Consider two small magnets (treat them as pointlike perfect dipoles 
with magnetic moments "m1" and "m2", to keep life as simple as possible).  
In the configuration shown ("opposite poles facing"), find the force between 
them as a function of distance r.  (Does the sign work out for you sensibly?) 
 
B) Let's do a crude estimate of the strength of the magnetic moment of a simple cheap magnet.  
Assume the atomic dipole moment of an iron atom is due to an (unpaired) electron spin. Q#2 
above taught us what the magnetic dipole moment of a single electron is (or, just look it up to 
get the factor of 2 right!) The mass density and atomic mass of iron are also easy to look up. 
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Consider a small, ordinary, kitchen fridge "button sized" magnet, and make a 
very rough estimate of its total magnetic moment. Then use your formula 
from part A to estimate how high (h) one such magnet would "float" above 
another (if oriented as shown) Does your answer seem at all realistic, based on 
your experiences with small magnets? (note that such a configuration is not 
stable - why not? I've seen toys like this, but they have a thin wooden peg to 
keep the magnets vertically aligned, that's how I drew it in the figure)  
 
 
Q4.  BOUND CURRENTS-I 
A) Consider a long magnetic rod, radius a. Imagine that we have set up a permanent 
magnetization M(s,φ,z) = c 

€ 

ˆ z , with c=constant.  Neglect end effects, assume the cylinder is 
infinitely long. Calculate the bound currents Κb and Jb (on the surface, and interior of the rod 
respectively).  What are the units of "c"? Use these bound currents to find the magnetic field 
inside and outside the cylinder. (Direction and magnitude)  Find the H field inside and outside 
the cylinder, and verify that H ⋅d


l = Ifree, enclosed∫ works. Explain briefly in words why your 

answer might be what it is. (Have you done a related homework problem earlier this term?) 
 
B) Now relax the assumption that it is infinite - if this cylinder was finite in length (L), what 
changes? Sketch the magnetic field (inside and out). Briefly but clearly explain your reasoning.  
Please draw two such sketches, one for the case that the length L is a few times bigger than a 
(long-ish rod, like a magnet you might play with from a toy set),  and another for the case L<<a 
(which is more like a magnetic disk than a rod, really)  
 
Q5. BOUND CURRENTS-II 
Like the last question, consider a long magnetic rod, radius a.  This time imagine that we can set 
up a permanent azimuthal magnetization M(s,φ,z) = 

€ 

c s ˆ ϕ , with c=constant, and s is the usual 
cylindrical radial coordinate.  Neglect end effects, assume the cylinder is infinitely long. 
Calculate the bound currents Κb and Jb (on the surface, and interior of the rod respectively).  
What are the units of "c"? Use these bound currents to find the magnetic field B, and also the H 
field, inside and outside. (Direction and magnitude)  
 
Q6. BOUND CURRENTS-III 
Once more, consider a very long cylinder (radius R) with a permanent magnetization, this time  
again parallel to the axis: M = cs ẑ , (where c is a constant, and s is the usual distance from the 
cylinder’s axis).  There is no free current anywhere.   
A) Find the magnetic field inside and outside the cylinder by figuring out the bound current 
everywhere and then figure out B created by those.  
 
B) Let’s find the B field inside and outside another way!  
This time, use Ampere’s law in the form in Griffiths section 6.3.1: H ⋅d


l = Ifree, enclosed∫ , and 

then use the standard relationH =
1
µ0
B−M  to get B. (It should agree with part A)  
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