OUTER conductor.
The INNER conductor is neutral. $\Delta \mathrm{V}=\mathrm{V}(\mathrm{c})-\mathrm{V}(0)$, between the center of the inner conductor ($\mathrm{s}=0$)
and the outside of the outer conductor?
C) Positive
D) Negative
E) Zero
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A point charge $+q$ is near a neutral copper sphere with a hollow interior space. In equilibrium, the surface charge density σ on the interior of the hollow space is.

A) Zero everywhere
B) Non-zero, but with
$+\mathrm{q} \quad$ zero net total charge on interior surface
C) Non-zero with nonzero net total charge on interior surface.

[^0]\qquad
\qquad
\qquad
\qquad
2.3b

A HOLLOW copper sphere has total charge + Q. A point charge $+q$ sits outside.
A charge, q^{\prime}, is in the hole, SHIFTED right a bit. (We are in static equilibrium.)
What does the E field look like in the "hole" region?

A) Simple Coulomb +q field (straight away from q', right up to the wall)
B) Complicated/ it's hard to compute
2.30c

A HOLLOW copper sphere has total charge $+Q$. A point charge $+q$ sits outside.
A charge, $+\mathrm{q}_{\mathrm{c}}$, is in the hole, SHIFTED right a bit. (Assume static equilibrium.) What does the charge distribution look like on the inner surface of the hole?

A) All - charges, uniformly spread around
B) - charges close to q_{c}, + charges opposite q_{c}
C) All - but more close to q_{c} and fewer opposite
D) All + but more opposite q_{c} and fewer close
E) Not enough information

[^1]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{2.49 \mathrm{~m}}$ Given a pair of very large, flat, conducting capacitor plates with total charges $+Q$ and $-Q$. Ignoring edges, what is the equilibrium distribution of the charge?
A) Throughout each plate
-Q
B) Uniformly on both side of each plate
C) Uniformly on top of $+Q$ plate and bottom of -Q plate
D) Uniformly on bottom of $+Q$ plate and top of $-Q$ plate
E) Something else

\qquad
\qquad
\qquad
\qquad
\qquad

2.50 You have two very large parallel plate
capacitors, both with the same area and the
same charge Q.
Capacitor \#1 has twice the gap of Capacitor \#2.
Which has more stored potential energy?
A) \#1 has twice the stored energy
B) \#1 has more than twice
C) They both have the same
D) \#2 has twice the stored energy
E) \#2 has more than twice.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

You have two parallel plate capacitors, both with the same area and the same gap size.
Capacitor \#1 has twice the charge of \#2.
Which has more capacitance? More stored energy?
A) $\mathrm{C} 1>\mathrm{C} 2, \mathrm{PE} 1>\mathrm{PE} 2$
B) $\mathrm{C} 1>\mathrm{C} 2, \mathrm{PE} 1=\mathrm{PE} 2$
C) $\mathrm{C} 1=\mathrm{C} 2, \mathrm{PE} 1=\mathrm{PE} 2$

\#1
+2 Q
-2 Q

D) $\mathrm{C} 1=\mathrm{C} 2, \mathrm{PE} 1>\mathrm{PE} 2$
$-2 \mathrm{Q}$
E) Some other combination!

\#2
+Q
-Q

\qquad

A parallel plate capacitor is attached to a battery which maintains a constant voltage difference V between the capacitor plates. While the battery is attached, the plates are pulled apart. The electrostatic energy stored in the capacitor
A) increases
B) decreases
C) stays constant.

[^0]: 2.30a

 A HOLLOW copper sphere has total charge +Q .
 A point charge +q sits outside at distance a.
 A charge, q^{\prime}, is in the hole, at the center.
 (We are in static equilibrium.)
 What is the magnitude of the E-field a distance r from q', (but, still in the "hole" region)

 A) $|E|=k q^{\prime} / r^{2}$
 B) $|E|=k\left(q^{\prime}-Q\right) / r^{2}$
 C) $|E|=0$
 D) $|\mathrm{E}|=\mathrm{kq} /(\mathrm{a}-\mathrm{r})^{2}$
 E) None of these! / it's hard to compute

[^1]: ${ }^{2.49}$ Given a pair of very large, flat, conducting capacitor plates with surface charge densities $+/-\sigma$, what is the E field in the region between the plates?
 A) $\sigma / 2 \varepsilon_{0}$
 B) σ / ε_{0}
 C) $2 \sigma / \varepsilon_{0}$

 D) $4 \sigma / \varepsilon_{0}$
 E) Something else

