A long coax has total charge +Q on the OUTER conductor. The INNER conductor is neutral. What is the sign of the potential difference, $\Delta V = V(c)-V(0)$, between the center of the inner

conductor (s=0)

and the outside of the outer conductor?

σ = ?

C) Positive

D) Negative E) Zero

(To think about: how and where do charges distribute on surfaces?)

A point charge +q is near a neutral copper sphere with a hollow interior space. In equilibrium, the surface charge density σ on the interior of the hollow space is..

A) Zero everywhere
 B) Non-zero, but with
 zero net total charge on
 interior surface
 C) Non-zero with non-zero net total charge on
 interior surface.

^{2.30a} A HOLLOW copper sphere has total charge +Q. A point charge +q sits outside at distance a. A charge, q', is in the hole, at the center. (We are in static equilibrium.) What is the magnitude of the E-field a distance r from q', (but, still in the "hole" region) $\sqrt{+q' r} + q + q = kq'/r^2 B |E| = kq'/r^2 C |E| = 0 D |E| = kq/(a-r)^2 E None of these! /$

it's hard to compute

^{2.49} Given a pair of very large, flat, conducting capacitor plates with surface charge densities +/- σ, what is the E field in the region between the plates?			
	+Q		
A) $\sigma/2\varepsilon_0$	+ + + + + + + + + + + + + + + + + + + +		
B) σ/ϵ_0			
C) $2\sigma/\epsilon_0$	-0		
, 0	~		
D) 4σ/ε ₀			
 E) Something else 			
	-		

^{2.49m} Given a pair of very large, flat, conducting capacitor plates with total charges +Q and –Q. Ignoring edges, what is the equilibrium distribution of the charge? +Q

-Q

- A) Throughout each plate
- B) Uniformly on both side of each plate
- C) Uniformly on top of + Q plate and bottom of –Q plate
- D) Uniformly on bottom of +Q plate and top of –Q plate
- E) Something else

^{2.50} You have two very large parallel plate capacitors, both with the same area and the same charge Q. Capacitor #1 has twice the gap of Capacitor #2. Which has more stored potential energy?			
 A) #1 has twice the stored energy B) #1 has <i>more</i> than twice C) They both have the same D) #2 has twice the stored energy E) #2 has more than twice. 	+Q -Q #2 +Q -Q		

You have two parallel plate capacitors, both with the same area and the same gap size. Capacitor #1 has twice the charge of #2. Which has more capacitance? More stored energy?				
A) C1>C2, PE1>PE2	#1			
B) C1>C2, PE1=PE2	+2Q			
C) C1=C2, PE1=PE2				
D) C1=C2, PE1>PE2	-2Q			
E) Some other combination!	#2			
	+Q			
	-Q			

