^{2.50} You have two very large parallel plate capacitors, both with the same area and the same charge Q. Capacitor #1 has twice the gap of Capacitor #2. Which has more stored potential energy?		
 A) #1 has twice the stored energy B) #1 has <i>more</i> than twice C) They both have the same 	+Q -Q	
D) #2 has twice the stored energyE) #2 has more than twice.	#2 +Q -Q	

You have two parallel plate capacitors, both with the same area and the same gap size. Capacitor #1 has twice the charge of #2. Which has more capacitance? More stored energy?		
A) C1>C2, PE1>PE2 B) C1>C2, PE1=PE2 C) C1=C2, PE1=PE2 D) C1=C2, PE1=PE2	#1 +2Q -2Q	
E) Some other combination!	#2 +Q	
	-Q	

General properties of solutions of ∇^2 V=0

- (1)V has no local maxima or minima inside. Maxima and minima are located on surrounding boundary.
- (2)V is boring. (I mean "smooth & continuous" everywhere).
- $(3)V(\mathbf{r})$ = average of V over any surrounding sphere:

$$V(\vec{r}) = \frac{1}{4\pi R^2} \oint_{\substack{\text{Sphere with}\\ \text{radius } R\\ around \ \vec{r}}} V \, da$$

(4) V is unique: The solution of to the Laplace eq. is uniquely determined if V is specified on the boundary surface around the volume.

