
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.51
You have two parallel plate capacitors, both with the
same area and the same gap size.
Capacitor \#1 has twice the charge of \#2.
Which has more capacitance? More stored energy?
A) $\mathrm{C} 1>\mathrm{C} 2, \mathrm{PE} 1>\mathrm{PE} 2$ B) $\mathrm{C} 1>\mathrm{C} 2, \mathrm{PE} 1=\mathrm{PE} 2$ C) $\mathrm{C} 1=\mathrm{C} 2, \mathrm{PE} 1=\mathrm{PE} 2$ D) $\mathrm{C} 1=\mathrm{C} 2, \mathrm{PE} 1>\mathrm{PE} 2$ E) Some other combination!

\qquad

A region of space contains no charges. \qquad What can I say about V in the interior?

A) Not much, there are lots of possibilities for $\mathrm{V}(\mathrm{r})$ in there
B) $V(r)=0$ everywhere in the interior. \qquad
C) $V(r)=$ constant everywhere in the interior

\qquad
\qquad
\qquad
\qquad Two very strong (big C) ideal
capacitors are well separated.
If they are connected by 2 thin conducting wires, as shown, is this electrostatic situation physically stable?

\qquad

Two very strong (big C) ideal \qquad capacitors are well separated.
What if they are connected by one thin \qquad conducting wire, is this electrostatic situation physically stable?

General properties of solutions of $\nabla^{\mathbf{2}} \mathbf{V}=\mathbf{0}$

(1) V has no local maxima or minima inside. Maxima and minima are located on surrounding boundary.
$(2) \mathrm{V}$ is boring. (I mean "smooth \& continuous" everywhere).
(3) $\mathrm{V}(\mathbf{r})=$ average of V over any surrounding sphere:

$$
V(\vec{r})=\frac{1}{4 \pi R^{2}} \oint_{\substack{\text { Sphere with } \\ \text { radius } R \\ \text { around } \vec{r}}} V d a
$$

(4) V is unique: The solution of to the Laplace eq. is uniquely determined if V is specified on the boundary surface around the volume.
3.5 If you put a + test charge at the center of this cube of charges, could it be in stable equilibrium?
A) Yes
B) No
C) ???

Earnshaw's Theorem

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.7 A point charge $+Q$ sits above a very large conducting slab. What is $\mathrm{E}(\mathrm{r})$ for other points above the slab? \qquad
A) Simple Coulomb's law:

$$
\vec{E}(\vec{r})=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\Re}{\Re^{3}} \quad \text { with } \vec{\Re}=(\vec{r}-d \hat{z})
$$

\qquad
B) Something more complicated
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

A point charge $+Q$ sits above a very large conducting slab. What is the electric force on this charge?
$\begin{array}{ll}\text { A) } 0 & \text { B) } \frac{Q^{2}}{4 \pi \varepsilon_{0}(2 d)^{2}} \text { downwards }\end{array}$
\qquad
C) $\frac{Q^{2}}{4 \pi \varepsilon_{0} d^{2}}$ downwards
D) Something more complicated

\qquad
\qquad
\qquad
3.8b A point charge $+Q$ sits above a very
large grounded conducting slab.
What's the energy of this system?
A) $\frac{-Q^{2}}{4 \pi \varepsilon_{0}(2 d)}$
B) Something else. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Is this a stable charge distribution for two neutral, conducting spheres?
\qquad
\qquad

\qquad
\qquad
\qquad
A) Yes
C) ???

