What is the value of
$\int_{0}^{2 \pi} \sin (2 x) \sin (3 x) d x \quad ?$
A) Zero
B) π
C) 2π
D) other
E) I need resources to do an integral like this!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two solutions for positive C are $\sinh x$ and $\cosh x$:

Which is which?
A)Curve 1 is $\sinh x$ and curve 2 is $\cosh x$ B)Curve 1 is $\cosh x$ and curve 2 is $\sinh x$

${ }_{c}^{3.11}$ Given the two diff. eq's:

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $\mathrm{C}_{1}+\mathrm{C}_{2}=0$. Which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
A) x
B) y
C) $\mathrm{C}_{1}=\mathrm{C}_{2}=0$ here
D) It doesn't matter

3.11 The $\mathrm{X}(\mathrm{x})$ equation in this problem involves
h the "positive constant" solutions:
$A \sinh (k x)+B \cosh (k x)$
What do the boundary conditions say
about the coefficients A and B above?
A) $A=0$ (pure cosh)
B) $B=0$ (pure sinh)
C) Neither: you should rewrite this in terms of $A^{\prime} e^{k x}+B^{\prime} e^{-k x}$!

D) Other/not sure?

\qquad
\qquad

