3.11

Given the two diff. eq's :

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $\mathrm{C}_{1}+\mathrm{C}_{2}=0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?

A) x
B) y
C) $\mathrm{C}_{1}=\mathrm{C}_{2}=0$ here

Two solutions for positive C are $\sinh x$ and $\cosh x$:

Which is which?
A)Curve 1 is $\sinh x$ and curve 2 is $\cosh x$
B)Curve 1 is cosh x and curve 2 is $\sinh x$
3.11

Given the two diff. eq's:

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $\mathrm{C}_{1}+\mathrm{C}_{2}=0$. Which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?

A) x
B) y
C) $C_{1}=C_{2}=0$ here
D) It doesn't matter

3.11 The $X(x)$ equation in this problem involves the "positive constant" solutions: $A \sinh (k x)+B \cosh (k x)$
What do the boundary conditions say about the coefficients A and B above?
A) $A=0$ (pure cosh)
B) $B=0$ (pure sinh)
C) Neither: you should rewrite this in terms of $A^{\prime} e^{k x}+B^{\prime} e^{-k x}$!

D) Other/not sure?
3.14

2 troughs (∞ in z, i.e. out of page) have grounded sidewalls. The base of each is held at V0.

3.14

$$
V(x, y)=\frac{4 V_{0}}{\pi} \sum_{n=1,3,5 \ldots}^{\infty} \frac{1}{n} \sin (n \pi x / a) e^{-n \pi y / a}
$$

How does $\mathrm{V}(\mathrm{x}, \mathrm{y})$ compare, 4 m above the middle of the base in the two troughs?
A) Same in each
B) $4 x$ bigger in \#1
C) $4 x$ bigger in \#2
D) much bigger in \#1
E) much bigger in \#2

3.15 Given $\nabla^{2} V=0$ in Cartesian coords, we separated $V(x, y, z)=X(x) Y(y) Z(z)$. Will this approach work in spherical coordinates, i.e. can we separate $\mathrm{V}(\mathrm{r}, \theta, \varphi)=\mathrm{R}(\mathrm{r}) \mathrm{P}(\theta) \mathrm{F}(\varphi)$?
A) Sure.
B) Not quite - the angular components cannot be isolated, e.g. $f(r, \theta, \varphi)=R(r) Y(\theta, \varphi)$
C) It won't work at all because the spherical form of Laplace's Equation has cross terms in it (see the front cover of Griffiths)
3.16 The Rodrigues formula for generating the Legendre Polynomials is

$$
P_{l}(x)=\frac{1}{2^{l} l!}\left(\frac{d y}{d x}\right)^{l}\left(x^{2}-1\right)^{l}
$$

If the Legendre polynomials are orthogonal, are the leading coefficients 1 necessary to maintain orthogonality? $\overline{2^{l} l!}$
A) Yes, $f_{m}(x)$ must be properly scaled for it to be orthogonal to $f_{n}(x)$.
B) No, the constants will only rescale the integral
3.17

Given $V(r, \theta)=\sum_{l} C_{l} P_{l}(\cos (\theta))$ we want to get to
the integral: $\int_{-1}^{1} P_{l}(u) P_{m}(u) d u=\left[\begin{array}{c}\frac{2}{2 l+1}, l=m \\ 0, l \neq m\end{array}\right]$
we can do this by multiplying both sides by:
A) $P_{m}(\cos \theta)$
B) $P_{m}(\sin \theta)$
C) $P_{m}(\cos \theta) \sin \theta$
D) $P_{m}(\sin \theta) \cos \theta$
E) $P_{m}(\sin \theta) \sin \theta$

Orthogonality

$$
\int_{-1}^{1} P_{l}(x) P_{m}(x) d x=\left\{\begin{array}{l}
\frac{2}{2 l+1} \text { if } 1=\mathrm{m} \\
0 \quad \text { if } 1 \neq \mathrm{m}
\end{array}\right.
$$

With: $x=\cos \theta$ and: $d x=-\sin \theta d \theta$, we get:
$\int_{0}^{\pi} P_{l}(\cos \theta) P_{m}(\cos \theta) \sin \theta d \theta=\left\{\begin{array}{l}\frac{2}{2 l+1} \text { if } 1=\mathrm{m} \\ 0 \quad \text { if } 1 \neq \mathrm{m}\end{array}\right.$

Legendre Polynomials $\mathbf{P}_{\mathbf{n}}(\mathbf{x})$

3.18

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose V on a spherical shell is
constant, i.e. $\mathrm{V}(\mathrm{R}, \theta)=\mathrm{V}_{0}$.
Which terms do you expect to appear
when finding V (outside) ?
A) Many A_{1} terms (but no B_{1} 's)
B) Many B_{1} terms (but no A_{\mid}'s)
C) Just A_{0}
D) Just B_{0}
E) Something else!!
3.18

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose V on a spherical shell is constant, i.e. $\mathrm{V}(\mathrm{R}, \theta)=\mathrm{V}_{0}$.
Which terms do you expect to appear when finding V (inside) ?
A) Many A_{1} terms (but no B_{1} 's)
B) Many B_{1} terms (but no A_{\mid}'s)
C) Just A_{0}
D) Just B_{0}
E) Something else!
3.19a

$$
\begin{array}{ll}
P_{0}(\cos \theta)=1, & P_{1}(\cos \theta)=\cos \theta \\
P_{2}(\cos \theta)=\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}, & P_{3}(\cos \theta)=\frac{5}{2} \cos ^{3} \theta-\frac{3}{2} \cos \theta
\end{array}
$$

Can you write the function $V_{0}\left(1+\cos ^{2} \theta\right)$
as a sum of Legendre Polynomials?
$V_{0}\left(1+\cos ^{2} \theta\right) \stackrel{n ? ?}{=} \sum_{l=0}^{\infty} C_{l} P_{l}(\cos \theta)$
A) No, it cannot be done
B) It would require an infinite sum of terms
C) It would only involve P_{2}
D) It would involve all three of P_{0}, P_{1} AND P_{2}
E) Something else/none of the above

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose V on a spherical shell is

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear when finding V (inside) ?
A) Many A, terms (but no B,'s)
B) Many B_{1} terms (but no A_{1} 's)
C) Just A_{0} and A_{2}
D) Just B_{0} and B_{2}
E) Something else!

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose V on a spherical shell is

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear when finding V (outside) ?
A) Many A_{1} terms (but no B_{1} 's)
B) Many B_{1} terms (but no A_{1} 's)
C) Just A_{0} and A_{2}
D) Just B_{0} and B_{2}
E) Something else!

Suppose that applying boundary conditions to Laplace's equation

$$
\nabla^{2} \mathrm{~V}=0
$$ leads to an equation of the form:

$$
\begin{array}{ll}
\sum_{=0}^{\infty} C_{11} P(\cos \theta)=4+3 \cos \theta & P_{0}(x)=1 \\
P_{1}(x)=x \\
& P_{2}(x)=\left(3 x^{2}-1\right) / 2
\end{array}
$$

Can you solve for the coefficients, the C_{\mid}'s ?
A) No, you need at least one more equation to solve for any the C's.
B) Yes, you have enough info to solve for all of the C's
C)Partially. Can solve for C_{0} and C_{1}, but cannot solve for the other C's.
D)Partially. Can solve for C_{0}, but cannot solve for the other C's.

