

$$
\begin{aligned}
& 3.19 \mathrm{a} \\
& \begin{aligned}
P_{0}(\cos \theta) & =1, \\
P_{2}(\cos \theta) & =\frac{3}{2} \cos ^{2} \theta-\frac{1}{2},
\end{aligned} \\
& P_{1}(\cos \theta)=\cos \theta \\
&
\end{aligned}
$$

Can you write the function $\sin ^{2} \theta$ as a sum of Legendre Polynomials?
$\sin ^{2} \theta \stackrel{m m}{=} \sum_{l=0}^{\infty} C_{l} P_{l}(\cos \theta)$
A) No, it cannot be done
B) Yes, It would require an infinite sum of terms
C) Yes, only $\mathrm{C}_{2}$ would be nonzero
D) Yes, but only $\mathrm{C}_{0}$ and $\mathrm{C}_{2}$ would be nonzero
E) Something else/none of the above

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$

| 3.21 |
| :--- |
| b |
| Does the previous answer change |
| at all if you're asked for V outside |
| the sphere? |
| a) yes |
| b) No |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Since the electric field is zero inside
this conducting sphere, and $\mathrm{V}=-\int \vec{E} \cdot d \vec{l}$, is $\mathrm{V}=0$ inside as well? $\qquad$
$\qquad$
a) Yes
b) No

$\qquad$
$\qquad$
$\qquad$
$\qquad$


