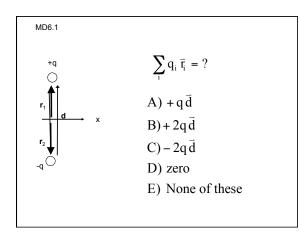
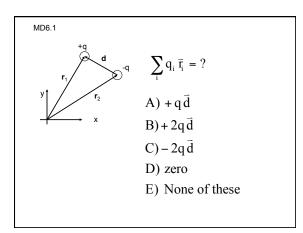

MD11-2	$\nabla^2 \mathbf{V} = 0$
Suppose that applying boundary condition equation leads to an equation of th	
$\sum C_1 P_1(\cos\theta) = 4 + 3\cos\theta$	$(x = \cos \theta)$
l=0	$P_0(x) = 1$
	$P_1(x) = x$
	$P_2(x) = (3x^2 - 1)/2$
Can you solve for the coefficients, the C ₁ 's ? A)No, you need at least one more equation to solve for any the C's.	
 B) Yes, you have enough info to solve for all of the C's C) Partially. Can solve for C₀ and C₁, but cannot solve for the other C's. 	
D)Partially. Can solve for C_0 , but cannot solve for the other C's.	

1



^{3.21}
Does the previous answer change at all if you're asked for V *outside* the sphere?
a) yes


b) No

Since the electric field is zero inside this conducting sphere, and $V = -\int \vec{E} \cdot d\vec{l}$, is V=0 inside as well? a) Yes b) No

