
\qquad
\qquad

The dipole moment, $\overrightarrow{\mathrm{p}}=\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}} \overrightarrow{\mathrm{r}}_{\mathrm{i}}=$?

A) $+q \bar{d}$
B) $+2 q \overline{\mathrm{~d}}$
C) $-2 q \bar{d}$
D) zero
E) None of these

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
For a collection of point charges, the dipole moment is defined as

$$
\stackrel{\rightharpoonup}{\mathrm{p}}=\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}} \stackrel{\rightharpoonup}{\mathrm{r}}_{\mathrm{i}}
$$

Consider the two charges, $+2 q$ and $-q$, shown.
Which statement is true?
A) The dipole moment is independent of the origin.
B) The dipole moment depends on the position of the origin.
C) The dipole moment is zero.
D) The dipole moment is undefined

\qquad
3.22 You have a physical dipole, $+q$ and $-q$ a finite distance d apart.
When can you use the expression:

$$
V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}}
$$

\qquad
\qquad
A) This is an exact expression everywhere. \qquad
B) It's valid for large r
C) It's valid for small r
D) ? \qquad
\qquad
3.22
d
You have a physical dipole, $+q$ and $-q$, a
\qquad finite distance d apart.
When can you use the expression

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}} \sum \frac{q_{i}}{\mathfrak{\chi}_{i}}
$$

A) This is an exact expression everywhere. \qquad
B) It's valid for large r
C) It's valid for small r
D) ?

\qquad
3.22
a A small dipole (dipole moment $p=q d$) points in the z direction.
We have derived $V(\vec{r}) \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{q d z}{r^{3}}$
Which of the following is correct (and "coordinate free")?
A) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}}$
B) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{3}}$
C) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \vec{r}}{r^{2}}$
D) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \times \hat{r}}{r^{2}}$
E) None of these

$$
\begin{aligned}
& \text { MD6 - } 2 \\
& \text { For a dipole at the origin pointing in the z-direction, we } \\
& \text { have derived } \\
& \overrightarrow{\mathbf{E}}_{\text {dip }}(\overrightarrow{\mathrm{r}})=\frac{\mathrm{p}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta}) \\
& \text { For the dipole } \mathbf{p}=\mathrm{q} \mathbf{d} \text { shown, what does the } \\
& \text { formula predict for the direction of } \mathbf{E}(\mathbf{r}=0) \text { ? } \\
& \begin{array}{lll}
\text { A) Down } & \text { B) Up } & \text { C) some other direction } \\
\text { D) The formula doesn't apply. }
\end{array}
\end{aligned}
$$

3.23

Griffiths argues that the force on a dipole in an E field is: $\overrightarrow{\mathbf{F}}=(\overrightarrow{\mathbf{p}} \bullet \vec{\nabla}) \overrightarrow{\mathbf{E}}$

If the dipole \mathbf{p} points in the z direction, what direction is the force?
A)Also in the z direction
B) perpendicular to z
C) it could point in any direction
3.24

Griffiths argues that the force on a dipole in an E field is: $\overrightarrow{\mathbf{F}}=(\overrightarrow{\mathbf{p}} \bullet \vec{\nabla}) \overrightarrow{\mathbf{E}}$

If the dipole \mathbf{p} points in the z direction, what can you say about \mathbf{E} if I tell you the force is in the x direction?
A) E simply points in the x direction
B) Ez must depend on x
C) Ez must depend on z
D) Ex must depend on x
E) Ex must depend on z
$\begin{array}{ll}4.1 & \text { The sphere below (radius a) has uniform } \\ \text { alt }\end{array}$ polarization \mathbf{P}_{0} (which points in the \mathbf{z} direction.)
What is the total dipole moment of this
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad sphere?
A) zero
B) $P_{0} a^{3}$
C) $4 \pi a^{3} P_{0} / 3$
D) P_{0}
E) None of these/must be more \qquad complicated

4.1
The cube below (side a) has uniform
polarization \mathbf{P}_{0}.
(which points in the z direction.)
What is the total dipole moment of this cube?
A) zero
B) $a^{3} \mathbf{P}_{0}$
C) \mathbf{P}_{0}
D) \mathbf{P}_{0} / a^{3}
E) $2 \mathbf{P}_{0} a^{2}$

\qquad

