

^{3.22} You have a physical dipole, +q and -q a finite distance d apart. When can you use the expression: $V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \hat{r}}{r^2}$ A) This is an exact expression everywhere. B) It's valid for large r

C) It's valid for small r

D)?

3.22 You have a physical dipole, +q and -q,
d a finite distance d apart.
When can you use the expression

$$V(r) = \frac{1}{\sqrt{1 + \frac{q_i}{r_i}}} \sum_{i=1}^{n} \frac{q_i}{r_i}$$

$$Y(r) = \frac{1}{4\pi\varepsilon_0} \sum \frac{\eta_i}{\Re_i}$$

A) This is an exact expression everywhere.

B) It's valid for large r

C) It's valid for small r

D) ?

3.23

Griffiths argues that the force *on* a dipole in an E field is: $\vec{F} = (\vec{p} \cdot \vec{\nabla})\vec{E}$

If the dipole ${\bf p}$ points in the z direction, what direction is the force?

A) Also in the z directionB) perpendicular to zC) it could point in any direction

3.24

Griffiths argues that the force *on* a dipole in an E field is: $\vec{F} = (\vec{p} \cdot \vec{\nabla})\vec{E}$

If the dipole \mathbf{p} points in the z direction, what can you say about \mathbf{E} if I tell you the force is in the x direction?

- A) E simply points in the x direction
- B) Ez must depend on x
- C) Ez must depend on z
- D) Ex must depend on x
- E) Ex must depend on z

3.29	In terms of the multipole expansion V(r) = V(mono) + V(dip) + V(quad) + the following charge distribution has the form:						
		\bigcirc	\bigcirc		$\bullet = +q$		
	\bigcirc			\bigcirc	○=-q		
A) $V(r) = V(mono) + V(dip) + higher order terms$							
B) $V(r) = V(dip) + higher order terms$							
C) $V(r) = V(dip)$							
D) V(r)=only higher order terms than dipole							
E) No higher terms, V(r)=0 for this one.							

	Let me know how far along you are:
B)	DONE with page 1 DONE with page 2 DONE with page 3!

