

What is the direction of the dipole moment of the blue sphere? $\sigma = k \sin(\theta)$ a) $\hat{\theta}$ b) \hat{r} c) \hat{z} d) $\hat{\phi}$ e) the dipole moment is zero (or is ill defined)

Imagine two fluids, red (+) and blue (-), each uniform, identical, in a rectangular shape (area A, height H). This fluid has N "atoms"/m^3, and each "atom" (or unit) has

available a charge q (which can separate/move). Imagine the red fluid moves UP the page, uniformly, a distance "d".

1) How much charge Q appears on the top surface? (on the bottom? the sides?)

2) What is σ on the top, in terms N, q, d, A, and/or H

3) What is the polarization P in terms of those variables?

4) What is σ on the top in terms of P?=

5) What if we displace the fluid that same distance "d", but at an angle θ with respect to the vertical. What are the answers above?

MD8-3 A linear dielectric in the shape of a rectangular block has a uniform polarization P (due to an external E-field) parallel to an edge, as shown. How many of the sides of the block have a non-zero surface charge density? A) 1 B) 2 C) 4 D) 6 E) 0

Are σ_{b} and ρ_{b} due to real charges?

- A) Of course not! They are as fictitious as it gets! (Like in the 'method of images.')
- B) Of course they are! They are as real as it gets! (Like σ and ρ in Chapter 2.)
- C) I have no idea 😕