

What is the direction of the dipole moment of the blue sphere?
a) $\hat{\theta}$
b) \hat{r}
c) z
d) ϕ
e) the dipole moment is zero (or is ill defined)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
V(z) & =\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\lambda d z^{\prime}}{\Re} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \int_{z^{\prime}=-d}^{z^{\prime}=0} \frac{\lambda d z^{\prime}}{\left(z-z^{\prime}\right)} \\
& =\left.\frac{\lambda}{4 \pi \varepsilon_{0}}(-) \ln \left(z-z^{\prime}\right)\right|_{-d} ^{0} \\
& =\frac{\lambda}{4 \pi \varepsilon_{0}} \ln \left(\frac{z+d}{z}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

The cube below (side a) has uniform polarization \mathbf{P}_{0}
(which points in the z direction.)
What is the total dipole moment of this cube?
A) zero
B) $a^{3} P_{0}$
C) P_{0}
D) P_{0} / a^{3}

E) $2 P_{0} a^{2}$

$$
\begin{array}{|c}
+++++++++ \\
+++++++++ \\
+++++++++ \\
+++++++++ \\
+++++++++ \\
+++++++++
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

MD8-2
A VERY thin slab of thickness d and area A has \qquad volume charge density $\rho=$ Q / V
Because it's so thin, we may think of it as a
surface charge density $\sigma=Q / A$.

\qquad
\qquad
The relation between ρ and σ is
A) $\sigma=\rho$ \qquad
B) $\sigma=d \rho$
C) $d \sigma=\rho$
D) $\sigma=V \rho$
E) $V \sigma=\rho$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MD8-3

A linear dielectric in the shape of a rectangular block has a uniform polarization \mathbf{P} (due to an external E-field) \qquad parallel to an edge, as shown. How many of the sides
\qquad $\begin{array}{lllll}\text { A) } 1 & \text { B) } 2 & \text { C) } 4 & \text { D) } 6 & \text { E) } 0\end{array}$
\qquad
\qquad
$\uparrow \mathrm{P}=$ constant
\qquad
\qquad
${ }^{4.4} \mathrm{~A}$ dielectric slab (top area A , height h) has
been polarized, with $\mathrm{P}=\mathrm{P}_{0}$ (in the +z direction)
What is the surface charge density, σ_{b}, on the
bottom surface?
A) 0
B) $-P_{0}$
C) P_{0}
D) $P_{0} \mathrm{~A} h$
E) $\mathrm{P}_{0} \mathrm{~A}$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Are σ_{b} and ρ_{b} due to real charges?
A) Of course not! They are as fictitious as it
gets! (Like in the 'method of images.')
B) Of course they are! They are as real as
it gets! (Like σ and ρ in Chapter 2.)
C) I have no idea $: 8$

[^0]: Imagine two fluids, red (+) and blue (-), each uniform, identical, in a rectangular shape (area A, height H).
 This fluid has N "atoms" $/ \mathrm{m}^{\wedge} 3$, and each "atom" (or unit) has available a charge q (which can separate/move). Imagine the red fluid moves UP the page, uniformly, a distance "d".

 1) How much charge Q appears on the top surface? (on the bottom? the sides?)
 2) What is σ on the top, in terms N, q, d, A, and/or H
 3) What is the polarization P in terms of those variables?
 4) What is σ on the top in terms of P ?=
 5) What if we displace the fluid that same distance "d", but at an angle θ with respect to the vertical. What are the answers above?
