

In your own words, define what we mean by "free charge", and "bound charge"

If you put a dielectric in an external field $\boldsymbol{\mathsf{E}}_{\mathsf{ext}},$ it polarizes, adding a new field, $\mathbf{E}_{induced}$ (from the bound charges). These superpose, making a total field \mathbf{E}_{tot} . What is the vector equation relating these three fields? A) $\vec{\mathbf{E}}_{tot} + \vec{\mathbf{E}}_{ext} + \vec{\mathbf{E}}_{induced} = 0$ B) $\vec{\mathbf{E}}_{induced} = \vec{\mathbf{E}}_{ext} + \vec{\mathbf{E}}_{tot}$ С $\vec{\mathbf{E}}_{\text{ext}} = \vec{\mathbf{E}}_{\text{induced}} + \vec{\mathbf{E}}_{\text{tot}}$

C)
$$\vec{\mathbf{E}}_{tot} = \vec{\mathbf{E}}_{ext} + \vec{\mathbf{E}}_{induced}$$
 D) $\vec{\mathbf{E}}_{ext} = \vec{\mathbf{E}}_{ir}$
E) Something else!

4.5 We define "Electric Displacement" or "D" field: **D** = ε_0 **E** + **P**. If you put a dielectric in an external field E_{ext}, it polarizes, adding a new field, **E**_{induced} (from the bound charges). These superpose, making a total field \mathbf{E}_{tot} . Which of these three E fields is the "E" in the formula for D above? C) **E**_{tot}

A) **E**_{ext}

B) **E**_{induced}

Linear Dielectric: $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$ χ_e is the "Electric Susceptibility (Usually small, always positive)

Linear Dielectric: $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$ $\chi_e \text{ is the "Electric Susceptibility"}$ $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \mathbf{E} + \varepsilon_0 \chi_e \mathbf{E}$ $= \varepsilon_0 (1 + \chi_e) \mathbf{E}$ $\equiv \varepsilon_0 \varepsilon_r \mathbf{E}$ $\varepsilon_r \text{ is the dielectric constant}$ $\varepsilon \equiv \varepsilon_0 \varepsilon_r \text{ is the permittivity}$

