

 A very large (effectively infinite) capacitor has charge Q. A neutral (homogeneous) dielectric is inserted into the gap (and of course, it will polarize). We want to find D everywhere. Which equation would you head to first? 	
i) $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ ii) $\oint \vec{D} \cdot d\vec{a} = Q_{\text{free}}$ iii) $\oint \vec{E} \cdot d\vec{a} = Q / \varepsilon_0$	+Q $-\sigma_B$ $+\sigma_B$ -Q
A) i B) ii C) iii D) More than one of these would work OK.	

Linear Dielectric: $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$ $\chi_e \text{ is the "Electric Susceptibility"}$ $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ $= \varepsilon_0 (1 + \chi_e) \mathbf{E}$ $\equiv \varepsilon_0 \varepsilon_r \mathbf{E}$ $\varepsilon_r \text{ is the dielectric constant}$

