^{4.10} ^a You have a straight boundary between two linear dielectric materials (ε has one value
above, another below, the boundary)
There are no free charges in the regions
considered.
What MUST be continuous across the b'ndary?
i) E(parallel) ii) E(perpendicular)
iii) D(parallel) iv) D(perpendicular)
A) I and III B) II and IV
C) i and ii D) iii and iv
E) Some other combination!

- uniform on bottom
- b) cos(θ)

а

- c) sin(θ)
- d) Nothing simple, it yields an infinite series of cos's with coefficients.

^{4.10} You have a boundary between two linear dielectric materials (ε_r has one value above, another below, the boundary) There are no free charges in the regions considered. Which formula will voltage satisfy at the boundary? A) $V|_{out} - V|_{in} = 0$ B) $V|_{out} - V|_{in} = \frac{-\sigma_{iot}}{\varepsilon_0}$ C) $\varepsilon_{out} V|_{out} - \varepsilon_{in} V|_{in} = 0$ D) $\varepsilon_{out} V|_{out} - \varepsilon_{in} V|_{in} = -\frac{\sigma_{iot}}{\varepsilon_0}$

E) None of these, or MORE than one...

^{4.10} You have a boundary between two linear dielectric materials (
$$\varepsilon_{r}$$
 has one value above, another below, the boundary) There are no free charges in the regions considered. Which formula will the voltage satisfy at the boundary?
A) $\frac{\partial V}{\partial n}\Big|_{out} - \frac{\partial V}{\partial n}\Big|_{in} = \frac{-\sigma_{free}}{\varepsilon_{0}}$ B) $\frac{\partial V}{\partial n}\Big|_{out} - \frac{\partial V}{\partial n}\Big|_{in} = \frac{-\sigma_{tax}}{\varepsilon_{0}}$
C) $\varepsilon_{out} \frac{\partial V}{\partial n}\Big|_{out} - \varepsilon_{in} \frac{\partial V}{\partial n}\Big|_{in} = -\sigma_{free} = 0$ D) $\varepsilon_{out} \frac{\partial V}{\partial n}\Big|_{out} - \varepsilon_{in} \frac{\partial V}{\partial n}\Big|_{in} = -\sigma_{beaud}$
E) None of these, or MORE than one...

2

- ^{4.11} We argued that C goes UP by a factor of ε_r if you fill a capacitor with dielectric. What happens to the stored energy of a capacitor if it's filled with a dielectric?
 - A) It goes up
 - B) It goes down
 - C) It is unchanged
 - D)The answer depends on what else is "held fixed" (V? Q?)

