

4.10 You have a boundary between two linear dielectric materials (ε_r has one value above, another below, the boundary) Define $\varepsilon = \varepsilon_0 \varepsilon_r$ Choose the correct formula(s) for V at the boundary A) $\frac{\partial V}{\partial n}\Big|_{out} - \frac{\partial V}{\partial n}\Big|_{in} = \frac{-\sigma_{free}}{\varepsilon_0}$ B) $\frac{\partial V}{\partial n}\Big|_{out} - \frac{\partial V}{\partial n}\Big|_{in} = \frac{-\sigma_{tot}}{\varepsilon_0}$ C) $\varepsilon_{out} \frac{\partial V}{\partial n}\Big|_{out} - \varepsilon_{in} \frac{\partial V}{\partial n}\Big|_{in} = -\sigma_{free}$ D) $\varepsilon_{out} \frac{\partial V}{\partial n}\Big|_{out} - \varepsilon_{in} \frac{\partial V}{\partial n}\Big|_{in} = -\sigma_{bound}$ E) None of these, or MORE than one...

A) It goes up

- B) It goes down
- C) It is unchanged
- D)The answer depends on what else is "held fixed" (V? Q?)

5.1 A + charged particle moving up (speed v) enters a region with uniform **B** (left) and uniform E (into page). What's the direction of \mathbf{F}_{net} on the particle, at the instant it enters the region? symbols $\otimes \otimes \otimes \otimes \vec{\mathsf{E}}$ ⊗Ĕ $\otimes \otimes \otimes \otimes$ A.To the left ←₿ $\otimes \otimes \otimes$ \otimes B.Into the page ⊗⊗_₿ \otimes C.Out of the page \otimes D.No net force \vec{v} E.Not enough information Ð

