4.10
b

You have a boundary between two linear dielectric materials (ε_{r} has one value above, another below, the boundary)

Choose the correct formula(s) for V at the boundary
A) $\left.V\right|_{\text {out }}-\left.V\right|_{\text {in }}=0$
B) $\left.V\right|_{\text {out }}-\left.V\right|_{\text {in }}=\frac{-\sigma_{\text {tot }}}{\varepsilon_{0}}$
C) $\left.\varepsilon_{\text {out }} V\right|_{\text {out }}-\left.\varepsilon_{\text {in }} V\right|_{\text {in }}=0$
D) $\left.\varepsilon_{\text {out }} V\right|_{\text {out }}-\left.\varepsilon_{\text {in }} V\right|_{\text {in }}=-\frac{\sigma_{\text {tot }}}{\varepsilon_{0}}$
E) None of these, or MORE than one...
4.10

You have a boundary between two linear dielectric materials (ε_{r} has one value above, another below, the boundary) Define $\varepsilon=\varepsilon_{0} \varepsilon_{r}$ Choose the correct formula(s) for V at the boundary
A) $\left.\frac{\partial V}{\partial n}\right|_{\text {out }}-\left.\frac{\partial V}{\partial n}\right|_{\text {in }}=\frac{-\sigma_{\text {free }}}{\varepsilon_{0}}$
B) $\left.\frac{\partial V}{\partial n}\right|_{\text {out }}-\left.\frac{\partial V}{\partial n}\right|_{\text {in }}=\frac{-\sigma_{\text {ot }}}{\varepsilon_{0}}$
C) $\left.\varepsilon_{\text {out }} \frac{\partial V}{\partial n}\right|_{\text {out }}-\left.\varepsilon_{i n} \frac{\partial V}{\partial n}\right|_{\text {in }}=-\sigma_{\text {free }}$
D) $\left.\varepsilon_{\text {out }} \frac{\partial V}{\partial n}\right|_{\text {ouw }}-\left.\varepsilon_{i n} \frac{\partial V}{\partial n}\right|_{\text {min }}=-\sigma_{\text {bomad }}$
E) None of these, or MORE than one...

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
 \qquad
\qquad
\qquad
\qquad
\qquad (To think about: what happens after longer times?)

enters a region with uniform B (left) and uniform E (into page).
What's the direction of $F_{\text {net }}$ on the particle, at the instant it enters the region?

$\xrightarrow{\text { symbols }}$	$\otimes \otimes \otimes \otimes \vec{E}$
A. To the left $\otimes \underset{\text { E }}{ }$	$\otimes \otimes \otimes \otimes$
B. Into the page $\leftarrow \overrightarrow{\mathrm{B}}$	$\otimes \otimes \otimes \otimes$
C. Out of the page	$\otimes \otimes \otimes \otimes \vec{B}$
D. No net force	$\stackrel{\rightharpoonup}{v}$
E.Not enough information	\oplus

\qquad

5.3A proton (speed \mathbf{v}) enters a region of uniform \mathbf{B}. \mathbf{v} makes an angle θ with \mathbf{B}. What is the subsequent path of the proton?
A) Helical
B ? Straight line
$\mathrm{C})$ Circular motion, \perp page.
(plane of circle is $\perp \mathbf{B}$)
$\mathrm{D})$ Circular motion \perp page.
(plane of circle at angle θ w.r.t. \mathbf{B})
$\mathrm{E})$ Impossible. \mathbf{v} should always be $\perp \mathbf{B}$

[^0]: 4.11 We argued that C goes UP by a factor of ε_{r} if you fill a capacitor with dielectric. What happens to the stored energy of a capacitor if it's filled with a dielectric?
 A) It goes up
 B) It goes down
 C) It is unchanged
 D)The answer depends on what else is "held fixed" (V? Q?)

