
 A) Helical B) Straight line C) Circular motion, ⊥ page. (plane of circle is ⊥ B) D) Circular motion ⊥ page. (plane of circle at angle θ w.r.t. B) E) Impossible. v should always be ⊥ B

5.4	
A wire loop in a B field has a current I. The B-field is localized, it's only in the hatched region, roughly zero elsewhere. Which way is I flowing to hold the mass in place?	
A) CW B) CCW C) You cannot "levitate" m	
A wire loop in a B field has a current I. The mass is "levitated" by the magnetic force F_{mag} =ILB. If you increase the current , does the magnetic force do positive work on the mass? B (into page, uniform) A) Yes B) No	
 Positive ions flow right through a liquid, negative ions flow left. The spatial density and speed of both ions types are identical. Is there a net current through the liquid? 	
A) Yes, to the right B) Yes, to the left C) No D) Not enough information given	

Current I flows down a wire (length L) with a square cross section (side a) If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density J ? A) $J = I/a^2$ B) $J = I/a$	
C) $J = I/4a$ D) $J = a^2I$	
E) None of the above (Units!)	
Current I flows down a wire (length L) with a square cross section (side a) If it is uniformly distributed over the outer surfaces only, what is the magnitude of the surface current density K ? A) $K = I/a^2$ B) $K = I/a$ C) $K = I/(4a)$ D) $K = aI$ E) None of the above	
A "ribbon" (width a) of surface current flows (with surface current density K) Right next to it is a second identical ribbon of current. Viewed collectively, what is the new total surface current density?	

A "ribbon" (width a) of surface 5.8 current flows (with surface current density K) Right next to it is a second identical ribbon of current. Viewed collectively, what is the new total surface current density? A) K B) 2K C) K/2 D) Something else A "ribbon" (width a) with uniform surface ERK5-1 current density K passes through a uniform magnetic field \mathbf{B}_{ext} . Only the length b along the ribbon is in the field. What is the magnitude of the force on the ribbon? A) KB B) aKB C) abKB D) bKB/a E) KB/(ab)