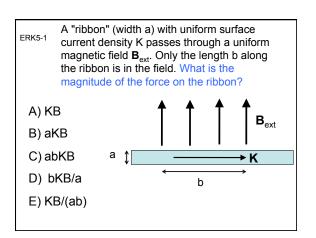
^{5.7} Current I flows down a wire (length L) with a square cross section (side *a*) If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density *J*?

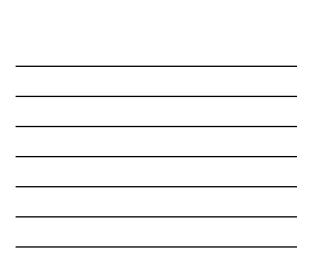
A)
$$J = I/a^2$$
 B) $J = I/a$

C)
$$J = I / 4a$$
 D) $J = a^2 I$

E) None of the above !

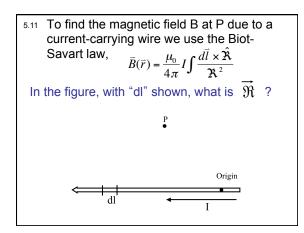
^{5.6} Current I flows down a wire (length L) with a square cross section (side *a*) If it is uniformly distributed over the outer surfaces only, what is the magnitude of the surface current density *K*? A) $K = I/a^2$ B) K = I/a

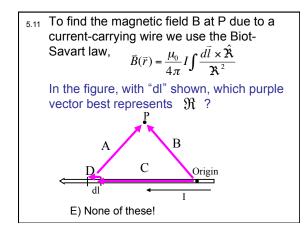

C)
$$K = I/(4a)$$
 D) $K = aI$


E) None of the above

A "ribbon" (width a) of surface current flows (with surface current density K)
 Right next to it is a second identical ribbon of current.
 Viewed collectively, what is the new total surface current density?

A "ribbon" (width a) of surface current flows (with surface current density K) Right next to it is a second identical ribbon of current. Viewed collectively, what is the new total surface current density?
A) K B) 2K C) K/2




^{5.10} Which of the following is a statement of charge conservation? $\frac{\partial \rho}{\partial t} =$

^{5.10} Which of the following is a statement of charge conservation?		
A)	$\frac{\partial \rho}{\partial t} = -\nabla \vec{\mathbf{J}}$	B) $\frac{\partial \rho}{\partial t} = -\iint \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$
C) -	$\frac{\partial \rho}{\partial t} = -\iiint (\nabla \cdot \vec{\mathbf{J}}) d\tau$	$D)\frac{\partial\rho}{\partial t} = -\nabla \bullet \vec{\mathbf{J}}$
E) Not sure		

