5.10 Which of the following is a statement of charge conservation?
A) $\frac{\partial \rho}{\partial t}=-\nabla \overrightarrow{\mathbf{J}}$
B) $\frac{\partial \rho}{\partial t}=-\nabla \cdot \overrightarrow{\mathbf{J}}$
C) $\frac{\partial \rho}{\partial t}=-\iiint(\nabla \cdot \overrightarrow{\mathbf{J}}) d \tau$
D) $\frac{\partial \rho}{\partial t}=-\oiiint \overrightarrow{\mathbf{J}} \cdot d \overrightarrow{\mathbf{A}}$
E) Not sure
5.11 To find the magnetic field B at P due to a current-carrying wire we use the Biot-
Savart law,
$\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathfrak{K}}}{\mathfrak{K}^{2}}$
In the figure, with "dl" shown, what is $\overrightarrow{\mathfrak{R}}$?
\qquad
\qquad
\qquad
\qquad

5.11 To find the magnetic field B at P due to a current-carrying wire we use the Biot- \qquad Savart law,

$$
\bar{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathfrak{R}}}{\mathfrak{K}^{2}}
$$

In the figure, with "dl" shown, which purple
\qquad
\qquad vector best represents \mathfrak{R} ?

E) None of these!
5.12 To find the magnetic field B at P due to a current-carrying wire we use the Biot-Savart
law, $\quad \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathfrak{K}}}{\mathfrak{K}^{2}}$
What is the direction of the infinitesimal contribution $\mathrm{dB}(\mathrm{P})$ created by current in dl?
A) Up the page
P
B) Directly away from dI (in the plane of the page)
C) Into the page
D) Out of the page
E) Some other direction
5.13 To find the magnetic field B due to a current-carrying wire, below, we use the Biot-Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \bar{l} \times \not{\not}}{\mathfrak{K}^{2}}$
What is the magnitude of $\frac{d \vec{l} \times \hat{\mathfrak{R}}}{\mathfrak{K}^{2}}$?

5.13 To find the magnetic field B due to a current-carrying wire, below, we use the
\qquad Biot-Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \bar{l} \times \nprec}{\mathfrak{K}_{\mathrm{p}}^{2}}$ \qquad
What is the magnitude of $\frac{d \vec{l} \times \hat{\mathfrak{R}}}{\mathfrak{Z}^{2}}$?

a) $\frac{d l \sin \theta}{\mathfrak{R}^{2}}$
b) $\frac{d l \sin \theta}{\Re^{3}}$
c) $\frac{d l \cos \theta}{\Re^{2}}$
d) $\frac{d l \cos \theta}{\Re^{3}}$
e) something else!
\qquad
(And, what's \mathfrak{R} here, given that $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$?)
5.13m To find the magnetic field B due to a current-carrying wire, below, we use the Biot-Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \bar{l} \times \mathfrak{K}}{\mathfrak{K}^{2}}$
What is the value of $1 \frac{d \vec{l} \times \hat{\varkappa}}{\Re^{2}}$?

(What's \mathfrak{R} here, given that $P=(0, y, 0)$?)
5.13m To find the magnetic field B due to a current-carrying wire, below, we use the Biot-Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \bar{l} \times \nprec}{\mathfrak{K}^{2}}$
What is the value of
$1 \frac{d \vec{l} \times \hat{\mathcal{R}}}{\chi^{2}}$?
a) $\frac{\int y d x^{\prime} \hat{z}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}$
b) $\frac{I x^{\prime} d x^{\prime} \hat{y}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}$
c) $\frac{-I x^{\prime} d x^{\prime} \hat{y}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}$
d) $\frac{-I y d x^{\prime} \hat{\imath}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}$
e) Other!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A.14 $\frac{\mu_{0}}{\pi s} I$
B) $\frac{\mu_{0}}{2 \pi s} I$
C) $\frac{\mu_{0}}{4 \pi s} I$
D) $\frac{\mu_{0}}{8 \pi s} I$
E) None of these
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
5.16 What do you expect for direction of B(P)?
    How about direction of dB(P) generated JUST
    by the segment of current dl in red?
```



```
A) \(\mathbf{B}(p)\) in plane of page, ditto for \(\mathrm{dB}(P\), by red)
B) \(B(p)\) into page, \(d B(P\), by red) into page
C) \(\mathbf{B}(\mathrm{p})\) into page, \(d \mathbf{B}(P\), by red) out of page
D) \(\mathbf{B}(\mathrm{p})\) complicated - has mult component (not \(\perp\) or || to page), ditto for \(\mathrm{dB}(\mathrm{P}\), by red)
E) Something else!!
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
5.15

To find the magnetic field B due to a current-carrying loop, we use the Biot-Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathcal{Z}}}{\mathfrak{\varkappa}^{2}}$ What is the magnitude of $\frac{d \vec{l} \times \hat{\mathfrak{R}}}{\mathfrak{K}^{2}}$?
\qquad
\qquad
\qquad
A) $\frac{d l \sin \phi}{z^{2}}$
B) $\frac{d l}{z^{2}}$
C) $\frac{d l \sin \phi}{\left(z^{2}+a^{2}\right)}$
D) $\frac{d l}{\left(z^{2}+a^{2}\right)}$
E) Something quite different!
 (Which colored arrow is \mathfrak{R} ? \mathbf{r} ? \mathbf{r} '?)

What is dB_{z} (the contribution to the vertical component of \mathbf{B} from this dl segment?)
A) $\frac{d l}{z^{2}+a^{2}} \frac{a}{\sqrt{z^{2}+a^{2}}}$
B) $\frac{d l}{z^{2}+a^{2}}$
C) $\frac{d l}{z^{2}+a^{2}} \frac{z}{\sqrt{z^{2}+a^{2}}}$
D) $\frac{d l \cos \phi}{z^{2}+a^{2}}$
E) Something quite different!

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

