> 5.15 To find the magnetic field B due to a current-carrying loop, we use the Biot-Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\Re}}{\Re^{2}}$ What is the magnitude of $\frac{d \vec{l} \times \hat{\Re}}{\Re^{2}}$?
A) $\frac{d l \sin \phi}{z^{2}}$
B) $\frac{d l}{z^{2}}$
C) $\frac{d l \sin \phi}{\left(z^{2}+a^{2}\right)}$
D) $\frac{d l}{\left(z^{2}+a^{2}\right)}$
E) Something quite different!
(Which colored arrow is $\mathfrak{\ell}$? \mathbf{r} ? \mathbf{r} ? ?
5.15 To find the magnetic field B due to a current-carrying loop, we use the Biot-
Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \bar{l} \times \not{\mathfrak{K}}}{\mathfrak{Z}^{2}}$
\qquad
\qquad
What is dB_{z} (the contribution to the vertical \qquad component of \mathbf{B} from this dl segment?)
A) $\frac{d l}{z^{2}+a^{2}} \frac{a}{\sqrt{z^{2}+a^{2}}}$
B) $\frac{d l}{z^{2}+a^{2}}$
C) $\frac{d l}{z^{2}+a^{2}} \frac{z}{\sqrt{z^{2}+a^{2}}}$
D) $\frac{d l \cos \phi}{z^{2}+a^{2}}$
E) Something quite different!

\qquad
\qquad
\qquad
\qquad
\qquad
Consider the B-field a distance z from a current sheet in
the $z=0$ plane:
The B-field has
A) y-component only
B) z-component only
C)y and z-components
D) x, y, and z-components
E) Other
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
A) iii $>$ iv $>$ ii $>$ i
B) iii $>$ i $>$ ii $>$ iv
C) i $>$ ii $>$ iii $>$ iv
D) Something else!!
E) Not enough info given!!

An electron is moving in a straight line with constant speed v. What approach would you choose to calculate the B-field generated by this electron?
 e^{-}
A) Biot-Savart
B) Ampere's law
C) Either of the above.
D) Neither of the above.

\qquad
\qquad

```
c}\mp@subsup{}{c}{5.17}\mathrm{ If the arrows represent a B field, is
    there a J (perpendicular to the page)
    in the dashed region?
    A.Yes
```



```
B.No
C.Need more information to decide
```

(A)

(B)

(C)

(D)

lines that violate one of Maxwell's equations within the
region bounded by dashed lines
(What currents would be needed to generate the others?)

\qquad
5.22

What is $\oint \overrightarrow{\mathbf{B}} \cdot \mathbf{d} \overrightarrow{\mathbf{l}}$ around this purple (dashed) Amperian loop? \qquad

A) $\mu_{0}\left(| |_{2}\left|+\left|l_{1}\right|\right)\right.$
B) $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right|\right)$
C) $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \sin \theta\right) \quad$ D) $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right| \sin \theta\right)$
E) Something else!

