

An electron is moving in a straight line with <u>constant</u> speed v. What approach would you choose to calculate the B-field generated by this electron?

- A) Biot-Savart
- B) Ampere's law
- C) Either of the above.
- D) Neither of the above.

5.18	(A)	(B)
Pick a sketch		
showing B field		
lines that		
violate one of	(0) 57777	(D) 177
Maxwell's	1)111	
equations	2/11/1	
within the		KK7
region		
bounded by	(E)	
dashed lines.		
(What currents would be needed to generate the others?)		

The magnetic field in a certain region is given by $\vec{B}(x,y) = Cy\hat{x}$

> (C is a positive constant) Consider the imaginary loop shown. What can you say about the electric current passing through the loop?

- A. must be zero
- B. must be nonzero
- C. Not enough info

5.20

A solenoid has a total of N windings over a distance of L meters. We "idealize" by treating this as a surface current running around the surface. What is K?

A) I B) NI C) I/L E) Something else...

D) I N/L

MD11-3

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. What does this tell you about Bz, the z-component of the **B**-field outside the solenoid?

- A) Bz is constant outside
- B)Bz is zero outside
- C)Bz is not constant outside D)It tells you nothing about Bz

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. We can safely assume that B(s→∞)=0. What does this tell you about the **B**-field outside the solenoid? A) |B| is a small non-zero constant outside B) |B| is zero outside C) |B| is not constant outside D) We still don't know anything about |B|

In the case of the infinite solenoid we used loop 1 to argue that the **B**-field outside is zero. Then we used loop 2 to find the **B**-field inside. What would loop 3 show?

- a) The B-field inside is zero
- b) It does not tell us anything about the Bfield
- c) Something else

A thin toroid has (average) radius R and a total of N windings with current I. We "idealize" this as a surface current running around the surface. What is K, approximately?

A) I/R B) I/($2 \pi R$)
C) NI/R D) NI/($2 \pi R$)
E) Something else

What direction do you expect the B field to point? A) Azimuthally B) Radially C) In the z direction (perp. to page) D) Loops around the rim E) Mix of the above	
	7
what Amperian loop would you draw to find B "inside" the Torus	
(region II)	
A) Large "azimuthal" loop B) Smallish loop from	
region II to outside (where B=0) C) Small loop in region II	
D) Like A, but perp to page E) Something entirely different	
	-
Two long coaxial solenoids each carry current I but in opposite directions.	
The inner solenoid (radius a) has n1 turns per unit length, and the outer one (radius	
b) has n2. Find B (i) inside the solenoid, (ii) between	
them, and (iii) outside both.	
Figure 5.42	

One of Maxwell's equations, $\nabla \times E = 0$ made it useful for us to define a scalar potential V, where $E = -\nabla V$

Similarly, another one of Maxwell's equations makes it useful for us to define the vector potential, **A.** Which one?

- A) $\nabla \times E = 0$
- $B) \nabla \cdot E = \rho / \varepsilon_0$
- C) $\nabla \times B = \mu_0 J$
- $D) \ \nabla \cdot B = 0$
- E) something else!

$$\nabla \times \vec{\mathbf{E}} = 0 \rightarrow \vec{\mathbf{E}} = -\nabla V$$

Can add a constant 'c' to V without changing **E** ("Gauge freedom"): Vconstant = 0,

$$\vec{\nabla} \cdot \vec{\mathbf{B}} = 0 \Longrightarrow \vec{\mathbf{B}} = \vec{\nabla} \times \vec{\mathbf{A}}$$

Can add any vector function 'a' with $\nabla x a = 0$ to **A** without changing **B** ("Gauge freedom") $\nabla x (A + a) = \nabla x A + \nabla x a = \nabla x A = B$