
A) $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right|\right)$
B) $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right|\right)$
C) $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \sin \theta\right)$
D) $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right| \sin \theta\right)$
E) $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \cos \theta\right)$
\qquad
\qquad

An electron is moving in a straight line with constant speed v. What approach would you choose to calculate the B -field generated by this electron?

\qquad e^{-}
A) Biot-Savart
B) Ampere's law
C) Either of the above.
D) Neither of the above.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad

5.23

\qquad
\qquad

In the case of the infinite solenoid we used loop 1 to argue that the B-field outside is zero. Then we used loop 2 to find the B-
\qquad field inside. What would loop 3 show?
a) The \mathbf{B}-field inside is zero \qquad
b) It does not tell us anything about the \mathbf{B} field \qquad
c) Something else

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

5.21	Two long coaxial solenoids each carry
d	current I but in opposite directions.
	The inner solenoid (radius a) has n1 turns
per unit length, and the outer one (radius	
b) has n2.	
Find B (i) inside the solenoid, (ii) between	
them, and (iii) outside both.	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

One of Maxwell's equations, $\nabla \times E=0$ made it useful for us
to define a scalar potential V , where $E=-\nabla V$
Similarly, another one of Maxwell's equations makes it useful
for us to define the vector potential, \mathbf{A}. Which one?
A) $\nabla \times E=0$
B) $\nabla \cdot E=\rho / \varepsilon_{0}$
C) $\nabla \times B=\mu_{0} J$
D) $\nabla \cdot B=0$
E) something else!

$\nabla \times \overrightarrow{\mathbf{E}}=0 \rightarrow \overrightarrow{\mathbf{E}}=-\nabla \mathrm{V}$

Can add a constant 'c' to V without changing E ("Gauge freedom"): ∇ constant $=0$,

$$
\vec{\nabla} \cdot \overrightarrow{\mathbf{B}}=0 \rightarrow \overrightarrow{\mathbf{B}}=\vec{\nabla} \times \overrightarrow{\mathbf{A}}
$$

Can add any vector function 'a' with $\nabla \times a=0$ to A without changing B ("Gauge freedom")
$\nabla \times(A+a)=\nabla \times A+\underset{0}{\nabla \times a}=\nabla \times A=B$

