One of Maxwell's equations, $\nabla \times E=0$ made it useful for us to define a scalar potential V , where $E=-\nabla V$

Similarly, another one of Maxwell's equations makes it useful for us to define the vector potential, A. Which one?
A) $\nabla \times E=0$
B) $\nabla \cdot E=\rho / \varepsilon_{0}$
C) $\nabla \times B=\mu_{0} J$
D) $\nabla \cdot B=0$
$E)$ something else!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\nabla \times \overrightarrow{\mathbf{E}}=0 \rightarrow \overrightarrow{\mathbf{E}}=-\nabla \mathrm{V}$

Can add a constant 'c' to V without changing \mathbf{E} ("Gauge freedom"): \quad Vconstant $=0$,
$\vec{\nabla} \cdot \overrightarrow{\mathbf{B}}=0 \rightarrow \overrightarrow{\mathbf{B}}=\vec{\nabla} \times \overrightarrow{\mathbf{A}}$
Can add any vector function 'a' with $\nabla \times a=0$ to \qquad A without changing B ("Gauge freedom")
$\nabla \times(A+a)=\nabla \times A+\underset{0}{\nabla \times a}=\nabla \times A=B$ \qquad
\qquad
$\nabla^{2} \overrightarrow{\mathbf{A}}=-\mu_{0} \overrightarrow{\mathbf{J}}$
In Cartesian coordinates, this means: \qquad $\nabla^{2} \mathrm{~A}_{x}=-\mu_{0} \mathrm{~J}_{x}$, etc.

Does it also mean, in spherical coordinates, that $\nabla^{2} \mathrm{~A}_{r}=-\mu_{0} \mathrm{~J}_{r}$
A) Yes
B) No

$$
{ }^{5.25} \overrightarrow{\mathbf{A}}(\vec{r})=\frac{\mu_{0}}{4 \pi} \iiint \frac{\overrightarrow{\mathbf{J}}\left(r^{\prime}\right)}{\mathfrak{R}} d \tau^{\prime}
$$

Can you calculate that integral using spherical coordinates?
A) Yes, no problem
B) Yes, r' can be in spherical, but J still needs to be in Cartesian components
C) No. \qquad

```
MD12-3
The vector potential A due to a long straight wire with current I along the z-axis is in the direction parallel to:
```


\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad
\qquad
5.24 If the arrows represent the vector potential \mathbf{A} (note that $|A|$ is the same everywhere), is there a nonzero \mathbf{B} in \qquad the dashed region?

B. No \qquad
C. Need more information to decide

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is $\oint \overrightarrow{\mathbf{A}}(\vec{r}) \bullet d \overrightarrow{\mathbf{l}}$
\qquad
\qquad
A) The current density J
B) The magnetic field \mathbf{B}
C) The magnetic flux Φ_{B}
D) It's none of the above, but is something simple and concrete \qquad
E) It has no particular physical interpretation at all

[^0]: 5.27 Suppose A is azimuthal, given by $\overrightarrow{\mathbf{A}}=\frac{c}{s} \hat{\varphi}$ What can you say about curl(A)?
 A) $\operatorname{curl}(\mathbf{A})=0$ everywhere
 B) $\operatorname{curl}(\mathbf{A})=0$ everywhere except at $\mathrm{s}=0$.
 C) $\operatorname{curl}(\mathbf{A})$ is nonzero everywhere
 D) ???

