5.28	When you are done with p. 1: Choose all of the following statements that are implied if $\iint \vec{B} \cdot d\vec{a} = 0$ for any/all closed surfaces
(I) $\vec{\nabla} \cdot \vec{B} = 0$	
(II) $B_{above}^{\prime\prime} = B_{below}^{\prime\prime}$	
(III) $B_{above}^{\perp} = B_{below}^{\perp}$	
A) ((I) only
B) ((II) only
C)	(III) only
D)	(I) and (II) only
E) ((I) and (III) only

^{5.30} The leading term in the vector potential multipole expansion involves $\oint d\vec{\mathbf{l}}'$

What is the magnitude of this integral?

A) R

B) 2 π R

C) 0

D) Something entirely different/it depends!

This is the formula for an ideal magnetic dipole:

$$\vec{\mathbf{B}} = \frac{c}{r^3} (2\cos\theta \,\hat{r} + \sin\theta \,\hat{\theta})$$

What is different in a sketch of a *real* (physical) magnetic dipole (like, a small current loop)?

^{5.29} The formula from Griffiths for a magnetic dipole at the origin is: $\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\hat{m} \times \hat{r}}{r^2}$

Is this the *exact* vector potential for a flat ring of current with m=Ia, or is it approximate?

A)It's exact

B) It's exact if |r| > radius of the ring

C)It's approximate, valid for large r

D)It's approximate, valid for small r

6.2 Griffiths argues that the force on a magnetic dipole in a B field is: **F** = ∇(**m** • **B**)
If the dipole **m** points in the z direction, what can you say about **B** if I tell you the force is in the x direction?
A) **B** simply points in the x direction
B) Bz must depend on x
C) Bz must depend on z
D) Bx must depend on x
E) Bx must depend on z

