
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

To find the E - field at P from a thin ring (radius R, uniform linear charge density λ):
$\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\Re} \hat{\Re} \lambda \mathrm{dl}^{\prime}$ what is $\mathfrak{\Re}$?

\qquad
\qquad
\qquad
\qquad
\qquad
E) NONE of the arrows shown \qquad correctly represents \mathfrak{R}

2.15 | $\mathbf{E = \frac { 1 } { 4 \pi \varepsilon _ { 0 } } \int \frac { 1 } { \mathfrak { R } ^ { 2 } } \hat { \Re } \rho \mathrm { d } \tau = \frac { 1 } { 4 \pi \varepsilon _ { 0 } } \bullet (\ldots . ?)} \begin{array}{l}\text { A) } \int \frac{(X, Y, Z)}{\left((X-x)^{2}+(Y-y)^{2}+(Z-z)^{2}\right)} \rho \mathrm{dxdydz} \\ \text { B) } \int \frac{(X, Y, Z)}{\left((X-x)^{2}+(Y-y)^{2}+(Z-z)^{2}\right)^{3 / 2}} \rho \mathrm{dxdydz} \\ \text { C) } \int \frac{(X-x, Y-y, Z-z)}{\left((X-x)^{2}+(Y-y)^{2}+(Z-z)^{2}\right)} \rho \mathrm{dxdydz} \\ \text { D) } \int \frac{(X-x, Y-y, Z-z)}{\left((X-x)^{2}+(Y-y)^{2}+(Z-z)^{2}\right)^{3 / 2}} \rho \mathrm{dxdydz} \quad \text { E) None of these }\end{array}$ |
| :--- |

Griffiths p. 63 finds E a distance z from a line segment with charge density λ :

$$
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda L}{z \sqrt{z^{2}+L^{2}}} \hat{\mathbf{k}} \overbrace{-L}^{(0,0, z)} \mathrm{L}
$$

What is the approx. form for E, if $z \ll L$?
$E=\frac{2 \lambda}{4 \pi \varepsilon_{0}} \cdot(\ldots)$
A) 0
B) 1
C) $1 / z$
D) $1 / z^{\wedge} 2$
E) None of these is remotely correct.
Deep questions to ponder

- Is Coulomb's force law valid for all separation distances? (How about $r=0$?)
- What is the physics origin of the r^{2} dependence of Coulomb's force law?
- What is the physics origin of the $1 / \varepsilon_{0}$ dependence of Coulomb's force law?
- What is the physics origin of the $1 / 4 \pi$ factor in Coulomb's force law?
- What really is electric charge?
- Why is electric charge quantized (in units of e)?
- What really is negative vs. positive electric charge (i.e. $-e$ vs. $+e$)?
- Why does the Coulomb force vary as the product of charges $q_{1} q_{2}$?
- What really is the E-field associated with e.g. a point electric charge, e ?
- Are electric field lines real? Do they really exist in space and time?

