A Gaussian surface which is not a sphere has a single charge (q) inside it, not at the center. A charge -q sits just outside.
What can we say about total electric flux through this surface $\oint \vec{E} \cdot d \vec{a} \quad$?
A) It must be q / ε_{0}
B) It is NOT necessarily q / ε_{0}
C) We need more info/details to figure it out!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

What can you say about the flux of E through the sphere, and $|E|$ on the sphere? \qquad
A) Flux=0, $E=0$ everywhere on sphere surface \qquad
B) Flux $=0$, E need not be zero on sphere
C) Flux is not zero, $\mathrm{E}=0$ everywhere on sphere \qquad
D) Flux is not zero, E need not be zero...

1 1. In spherical coordinates, what would be
the correct description of the position
vector "r " of the point P shown at
$(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0,2 \mathrm{~m}, 0)$
A) $\overrightarrow{\mathbf{r}}=(2 m) \hat{r}$
B) $\overrightarrow{\mathbf{r}}=(2 m) \hat{r}+\pi \hat{\theta} \quad$ Origin
C) $\overrightarrow{\mathbf{r}}=(2 m) \hat{r}+\pi \hat{\theta}+\pi \hat{\varphi}$
D) $\overrightarrow{\mathbf{r}}=(2 m) \hat{r}+\pi \hat{\theta}+\pi / 2 \hat{\varphi}$
E) None of these

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
MD-1
Consider the vector field
$\mathrm{V}(\overrightarrow{\mathrm{r}})=\mathrm{c} \hat{\mathrm{r}}$
where $\mathrm{c}=\mathrm{constant}$.
The divergence of this vector field is:
A) Zero everywhere except at the origin
$\mathrm{B})$ Zero everywhere including the origin
$\mathrm{C})$ Non-zero everywhere, including the origin.
D) Non-zero everywhere, except at origin (zero at origin)
(No fair computing the answer. Get answer from your brain.)
\qquad
MD.1
Consider the vector field
Where $\mathrm{C}=\mathrm{r})=\mathrm{c} \hat{\mathrm{r}}$
The divergence of this vector field is:
A) Zero everywhere except at the origin
$\mathrm{B})$ Zero everywhere including the origin
$\mathrm{C})$ Non-zero everywhere, including the origin.
D) Non-zero everywhere, except at origin (zero at origin)
(No fair computing the answer. Get answer from your brain.)
\qquad

You have an E field given by
\qquad $\mathbf{E}=\mathrm{c} \mathbf{r}$, (Here c = constant, $r=$ spherical radius vector)

What is the charge density $\rho(r)$?
A) c
B) cr
C) 3 c
D) $3 \mathrm{cr} \mathrm{r}^{\wedge} 2$
E) None of these is correct

Given $\mathbf{E}=\mathbf{c} \mathbf{r}$,
$(c=$ constant, $\mathbf{r}=$ spherical radius vector)
We just found $\rho(r)=3 c$.
What is the total charge Q enclosed by an
imaginary sphere centered on the origin,
of radius R ?
Hint: Can you find it two DIFFERENT ways?
A) $(4 / 3) \pi c$ B) $4 \pi c$ C) $(4 / 3) \pi c R^{\wedge}$ D) $4 \pi c R^{\wedge} 3$ E) None of these is correct

\qquad We just found $\rho(r)=3 c$. \qquad
\qquad
\qquad
\qquad
\qquad
E) None of these is correct

What is the value of $\int_{-\infty}^{\infty} x^{2} \delta(x-2) d x$
A) 0
B) 2
C) 4
D) ∞
E) Something different! \qquad

A point charge (q) is located at \qquad position \mathbf{R}, as shown. What is $\rho(\mathrm{r})$, the charge density in all space? \qquad
A) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{R}})$
B) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{r}})$
C) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{R}})$

\qquad
\qquad
\qquad
D) $\rho(\overrightarrow{\mathbf{r}})=q \delta(\overrightarrow{\mathbf{R}}-\overrightarrow{\mathbf{r}})$ \qquad
E) None of these/more than one/???

What are the units of $\delta(x)$ if x is measured in meters?
A) δ is dimension less ('no units')
B) $[\mathrm{m}]$: Unit of length
C) $\left[\mathrm{m}^{2}\right]$: Unit of length squared
D) $\left[m^{-1}\right]$: $1 /$ (unit of length)
E) $\left[\mathrm{m}^{-2}\right]$: $1 /$ (unit of length squared)

What are the units of $\delta^{3}(\overrightarrow{\mathbf{r}})$ if the components of \vec{r} are measured in
\qquad meters?
A) [m]: Unit of length
B) $\left[\mathrm{m}^{2}\right]$: Unit of length squared
\qquad
\qquad
C) $\left[\mathrm{m}^{-1}\right]: 1$ (unit of length)
D) $\left[m^{-2}\right]: 1 /$ (unit of length squared)
E) None of these.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad

A) Yes, and it would be pretty easy...
B) Yes, but it's not at all easy.
C) No, Gauss' law applies, but it would not have been useful to compute E
D) No, Gauss' law would not even apply in this case
which straddles an infinite sheet of constant areal
mass density.
The four shapes are
I: cylinder II: cube III: cylinder IV: sphere
For which of these surfaces does gauss's law,
$\oiiint \vec{E} \cdot d \overrightarrow{\mathbf{A}}=Q_{\text {cnclosed }} / \varepsilon_{0} \quad$ help us find E near the surface??

$\begin{array}{llll}\text { A) All } & \text { B) I and II only } & \text { C) I and IV only } & \text { D) I, II and IV only }\end{array}$ E) Some other combo
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is the value of $\int_{-\infty}^{\infty} x^{2} \delta(x) d x$
A) 0
B) 1
C) 2
D) 4
E) 5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recall that $\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)$
What are the UNITS of $\delta\left(t-t_{0}\right) \quad$ (where t is seconds)
A) sec
B) sec $^{-1}$
C) unitless
D) depends on the units of $\mathrm{f}(\mathrm{t})$
E) Something different!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: ${ }_{\text {alt }}^{2.29}$
 If we now place a charge Q just outside that insulating, spherical shell (fixing all surface charges uniformly around the sphere)

 What is the electric field inside the sphere?
 A: 0 everywhere inside
 B: non-zero everywhere in the sphere
 C: Something else
 D: Not enough info given

