A Gaussian surface which is *not* a sphere has a single charge (q) inside it, *not* at the center. A charge –q sits just outside. What can we say about total electric flux through this surface $\oint \vec{E} \cdot d\vec{a}$?

- A) It must be q/ϵ_{0}
- B) It is NOT necessarily q/ $\epsilon_{\rm 0}$
- C) We need more info/details to figure it out!

D) Flux is not zero, E need not be zero...

You have an E field given by **E** = c **r**, (Here c = constant, **r** = spherical radius vector)

What is the charge density $\rho(\mathbf{r})$?

A) c B) c r C) 3 c D) 3 c r^2 E) None of these is correct Given $\mathbf{E} = c \mathbf{r}$, (c = constant, \mathbf{r} = spherical radius vector) We just found $\rho(\mathbf{r}) = 3c$. What is the total charge Q enclosed by an imaginary sphere centered on the origin, of radius R?

Hint: Can you find it two DIFFERENT ways?

A) (4/3) π c B) 4 π c C) (4/3) π c R^3 D) 4 π c R^3 E) None of these is correct

What is the value of $\int_{-\infty}^{\infty} x^2 \delta(x-2) dx$ A) 0
B) 2
C) 4
D) ∞ E) Something different!

10

A point charge (q) is located at position **R**, as shown. What is $\rho(\mathbf{r})$, the charge density in all space? A) $\rho(\vec{\mathbf{r}}) = q \delta^{3}(\vec{\mathbf{R}})$

B)
$$\rho(\vec{\mathbf{r}}) = q\delta(\vec{\mathbf{r}})$$

C) $\rho(\vec{\mathbf{r}}) = q\delta (\vec{\mathbf{r}} - \vec{\mathbf{R}})$

D) $\rho(\vec{\mathbf{r}}) = q\delta (\vec{\mathbf{R}} - \vec{\mathbf{r}})$

E) None of these/more than one/???

origin

What are the units of $\delta(x)$ if x is measured in meters?

- D) $[m^{-1}]$: 1 / (unit of length)
- E) [m⁻²]: 1 / (unit of length squared)

What are the units of $\delta^3(\vec{r})$ if the components of \vec{r} are measured in meters?

- Unit of length A) [m]:
- Unit of length squared B) [m²]:
- C) $[m^{-1}]$: 1 / (unit of length)
- D) [m⁻²]: 1 / (unit of length squared)
- E) None of these.

Å spherical *shell* has a uniform positive charge density on its surface. (There are no other charges around)

What is the electric field *inside* the sphere?

A: **E**=0 everywhere inside

B: E is non-zero

everywhere in the sphere C: **E**=0 only at the very center, but non-zero elsewhere inside the sphere.

D: Not enough info given

Consider these four closed gaussian surfaces, each of which straddles an infinite sheet of constant areal mass density. The four shapes are I: cylinder II: cube III: cylinder IV: sphere For which of these surfaces does gauss's law, $\oiint \vec{E} \cdot d\vec{A} = Q_{enclosed} / \varepsilon_0$ help us find E near the surface?? A) All B) I and II only C) I and IV only D) I, II and IV only E) Some other combo

What is the value of	$\int_{-\infty}^{\infty} x^2 \delta(x) dx$
A) 0	
B) 1	
C) 2	
D) 4	
E) 5	

	2	
What is the value of	$\int_{-\infty}^{2} (x^2 + 1)\delta(x)dx$	
A) 0		
B) 1		
C) 2		
D) 4		
E) 5		
		23

What is the value of $\int_{0}^{\infty} x^{2} \delta(x+2) dx$ A) 0 B) 2 C) 4 D) ∞ E) Something different!

What is the value of $\int_{-\infty}^{\infty} x^2 \delta(2-x) dx$ A) 2 B) -2 C) 4 D) -4 E) Something different!

 $\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$

Recall that $\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$ What are the UNITS of $\delta(t-t_0)$ (where t is seconds) A) sec B) sec⁻¹ C) unitless D) depends on the units of f(t) E) Something different!

28

27

