
\qquad

\qquad
\qquad

Click only when you are done with the \qquad yellow sheet:

What is the answer to the last question:
iv) Where is this E-field's divergence zero?
A) $\operatorname{div}(E)=0$ everywhere
\qquad
\qquad
$B) \operatorname{div}(E)=0$ NOwhere
C) $\operatorname{div}(E)=0$ everywhere OUTSIDE the pipe
D) $\operatorname{div}(E)=0$ on the surface of the pipe only
E) Something else!
\qquad
\qquad
\qquad
\qquad

A) Yes, and it would be pretty easy/elegant...
B) Yes, but it's not easy.
C) No. Gauss' law applies, but it can not be used here to compute E directly.
D) No, Gauss' law would not even apply in this case

Which is true about \mid E| at points on the imaginary dashed triangle?

A. |E| same everywhere (uniform) in (I) ONLY
B. $|\mathrm{E}|$ uniform in (II) ONLY
C. Uniform in both, but different in cases I \& II
D. Uniform in both, and same in cases I \& II.
E. $|E|$ varies from point to point in both cases

${ }^{2.27}$
A cubical non-conducting shell has a uniform positive charge
density on its surface. (There are no other charges around)
What is the field inside the box?
A: $\mathbf{E}=0$ everywhere inside
$\mathrm{B}: \mathbf{E}$ is non-zero everywhere inside
$\mathrm{C}: \mathbf{E}=0$ only at the very center, but non-zero
elsewhere inside.
D: Not enough info given

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{8}$ What is the curl of this vector field, \mathbf{V} \qquad in the region shown below? \qquad

枟元 \qquad
\qquad
 \qquad
A. non-zero everywhere
B. Zero at some points, non-zero others \qquad
C. zero curl everywhere shown

What is the curl of this vector field, \mathbf{V} in the region shown below?
$\begin{aligned} & \overrightarrow{\mathbf{v}}=c \hat{\varphi} \\ & \nabla \times \overrightarrow{\mathbf{v}}=\left[\frac{1}{s} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\varphi}}{\partial z}\right] \hat{s} \\ & +\left[\frac{\partial v_{s}}{\partial z}-\frac{\partial v_{z}}{\partial s}\right]^{\hat{\phi}}+\frac{1}{s}\left[\frac{\partial\left(s v_{\varphi}\right)}{\partial s}-\frac{\partial v_{s}}{\partial \phi}\right] \hat{z} \end{aligned}$
A. non-zero everywhere B. Zero at some points, non-zero others C. zero curl everywhere shown

What is the curl of this vector field, in the red region shown below?

A. non-zero everywhere in the box
B. Non-zero at a limited set of points
C. zero curl everywhere shown
D. We need a formula to decide for sure

What is the curl of this vector field, in \qquad the red region shown below?

\qquad
\qquad
\qquad
\qquad
A. non-zero everywhere in the box
B. Non-zero at a limited set of points
C. zero curl everywhere shown

A. non-zero everywhere in the box
B. Non-zero at a limited set of points
C. zero curl everywhere shown

\qquad
\qquad
\qquad
\qquad
\qquad

Why is $\int \vec{E} \cdot d \vec{l}=0$ in electrostatics?
a) Because $\nabla \mathrm{X} \vec{E}=0$
b) Because E is a conservative field
c) Because the potential between two points is independent of the path
d) All of the above
e) NONE of the above - it's not true!
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}$
$\vec{\Re}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}$
(with $\left.\overrightarrow{\mathfrak{R}}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)\right)$
It is also true that $\frac{\hat{\mathfrak{R}}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{\mid \mathfrak{R |}}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
\qquad
\qquad
It is also true that $\frac{\hat{\mathfrak{R}}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{|\mathfrak{R}|}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}$
(with $\overrightarrow{\mathfrak{R}}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)$)
It is also true that $\quad \frac{\hat{\Re}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{|\mathfrak{R}|}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
Question: is the following mathematically ok?
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iint \rho\left(\mathbf{r}^{\prime}\right)\left(-\nabla \frac{1}{|\Re|}\right) d \tau^{\prime}=-\nabla \frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\Re|} d \tau^{\prime}$
A) Yes
B) No
C) ???

Which of the following electrostatic \qquad fields could exist in a finite region of space that contains no charges?
A) $\operatorname{Axyz}(\hat{i}+\hat{j})$
B) $A(x z \hat{i}-x z \hat{j})$
C) $A(-x y \hat{j}+x z \hat{k})$
D) None of these
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

| Could this be a plot of \|E|(r)? Or $V(r)$? |
| :--- |
| (for SOME physical situation?) |
| A) Could be $E(r)$, or $V(r)$ |
| B) Could be $E(r)$, but can't be $V(r)$
 C) Can't be $E(r)$, could be $V(r)$
 D) Can't be either E) ??? |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad

The voltage is zero at a point in space.
You can conclude that :
A) The E-field is zero at that point.
B) B) The E-field is non-zero at that point
C) You can conclude nothing at all about the E-
field at that point

\qquad
\qquad

You can conclude that : \qquad
\qquad
\qquad
\qquad
\qquad

The voltage is constant everywhere along a line in space.

\qquad
\qquad

You can conclude that :
A) The E-field has constant magnitude along that line.
B) The E-field is zero along that line.
C) You can conclude nothing at all about the \qquad magnitude of \mathbf{E} along that line.

[^0]: Given a sphere with uniform surface charge density σ what can you say about the potential V inside this sphere? (Assume as usual, $\mathrm{V}(\infty)=0$)
 A) $V=0$ everywhere inside
 B) $V=$ non-zero constant everywhere inside
 C) V must vary with position, but is zero at the center.
 D) None of these.

