
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Way too much work. Please ease itupl
Its a bit much.
Seems aboutright
\square
Allte light, could probably handle a litte more without too much complaint
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today: Voltage or "Electric Potential" \qquad

The 1120 version: \qquad

- Voltage $\mathrm{V}=\mathrm{kq} / \mathrm{r}$ from a point charge
- Voltage = potential energy/charge
- $\Delta \mathrm{V}$ is "path independent"
- E = -dV/dr

$$
\begin{gathered}
\text { Potential and E-field } \\
V(\mathbf{r}) \equiv-\int_{\text {origin }}^{\mathbf{r}} \vec{E}\left(r^{\prime}\right) \cdot d \vec{r}^{\prime} \\
\mathbf{E}(\mathbf{r})=-\nabla V(r)
\end{gathered}
$$

The fact that V is well defined arises from
\qquad
\qquad
\qquad
$\oint \overrightarrow{\mathbf{E}}(\mathbf{r}) \bullet d \vec{l}=0$ \qquad
Which is exactly the same as (!)

$$
\nabla \times \overrightarrow{\mathbf{E}}(\mathbf{r})=0
$$

$$
\begin{gathered}
\text { Potential and E-field } \\
V(\mathbf{r})=-\int_{\text {origin }}^{\mathrm{r}} \vec{E}\left(r^{\prime}\right) \cdot d \vec{r}^{\prime} \\
\mathbf{E}(\mathbf{r})=-\nabla V(r)
\end{gathered}
$$

One way to find $V(r)$ (given charges):
\qquad
\qquad
\qquad
\qquad
$V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\mathfrak{R}|} d \tau^{\prime}$

$$
\begin{aligned}
& \text { One way to find } \mathrm{V}(\mathrm{r}) \text { (given charges): } \\
& V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\mathfrak{\Re}|} d \tau^{\prime} \\
& V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{d q}{|\mathfrak{R}|} \\
& \text { Voltage } \mathrm{V}=\mathrm{kq} / \mathrm{r} \text { from a point charge ! }
\end{aligned}
$$

So, what does

$$
V(\mathbf{r}) \equiv-\int_{\text {origin }}^{\mathrm{r}} \vec{E}\left(r^{\prime}\right) \bullet d \vec{r}^{\prime}
$$

Have to do with

$$
\oint \overrightarrow{\mathbf{E}}(\mathbf{r}) \cdot d \vec{l}=0
$$

And why is that the same as

$$
\nabla \times \overrightarrow{\mathbf{E}}(\mathbf{r})=0
$$

$$
\begin{aligned}
& \text { Fundamental theorem: } \\
& \qquad \int_{a}^{b}\left(\frac{d f}{d x}\right) d x=f(b)-f(a) \\
& \text { Divergence theorem: } \\
& \qquad \iiint_{V}(\nabla \bullet \vec{F}) d \tau=\oiint_{S} \vec{F} \bullet d \vec{A} \\
& \text { Stoke's (or "curl") theorem: } \\
& \qquad \iint_{S}(\nabla \times \vec{F}) \bullet d \vec{A}=\oint \vec{F} \bullet d \vec{l}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is the curl of this vector field, \mathbf{V} \qquad in the region shown below?
$\overrightarrow{\mathbf{V}}=c \hat{\varphi}$
A. non-zero everywhere
B. Zero at some points, non-zero others
C. zero curl everywhere shown

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
What is the curl of this vector field, \mathbf{V} in the region shown below?

$$
\overrightarrow{\mathbf{V}}=c \hat{\varphi}
$$

A. non-zero everywhere
B. Zero at some points, non-zero others
C. zero curl everywhere shown

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{gathered}
\vec{E}(r)=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \\
\nabla \times \overrightarrow{\mathbf{V}}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta v_{\phi}\right)-\frac{\partial v_{\theta}}{\partial \phi}\right] \hat{r} \\
+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial\left(r v_{\phi}\right)}{\partial r}\right] \hat{\theta}+\frac{1}{r}\left[\frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \theta}\right] \hat{\varphi} \\
\nabla \times \vec{E}=0!
\end{gathered}
$$

What is the curl of this vector field, in the red region shown below?

A. non-zero everywhere in the box
B. Non-zero at a limited set of points
C. zero curl everywhere shown
D. We need a formula to decide for sure

What is the curl of this vector field, in \qquad the red region shown below?

A. non-zero everywhere in the box
B. Non-zero at a limited set of points
C. zero curl everywhere shown
What is the curl of this bedow?

$$
\begin{gathered}
\overrightarrow{\mathbf{V}}=\frac{c}{S} \hat{\boldsymbol{\varphi}} \\
\nabla \times \overrightarrow{\mathbf{V}}=\left[\frac{1}{s} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\phi}}{\partial z}\right] \hat{s} \\
+\left[\frac{\partial v_{s}}{\partial z}-\frac{\partial v_{z}}{\partial s}\right] \hat{\phi}+\frac{1}{s}\left[\frac{\partial\left(s v_{\phi}\right)}{\partial s}-\frac{\partial v_{s}}{\partial \phi}\right] \hat{z}
\end{gathered}
$$

A. non-zero everywhere in the box
B. Non-zero at a limited set of points
C. zero curl everywhere shown
\qquad

A) Only I B) Only II
C) Both
D) Neither
E) Cannot answer without further info

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\Re^{2}} d \tau^{\prime} \\
& \vec{\Re}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)
\end{aligned}
$$

$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}$
(with $\left.\overrightarrow{\mathfrak{R}}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)\right)$
It is also true that $\frac{\hat{\Re}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{\mid \mathfrak{R |}}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
\qquad
\qquad
It is also true that $\frac{\hat{\mathfrak{R}}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{|\mathfrak{\Re}|}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}$
(with $\overrightarrow{\mathfrak{R}}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)$)
It is also true that $\quad \frac{\hat{\mathfrak{R}}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{|\mathfrak{R}|}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \rho\left(\mathbf{r}^{\prime}\right)\left(-\nabla \frac{1}{|\Re|}\right) d \tau^{\prime}$

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}
$$

(with $\vec{\Re}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)$)
It is also true that $\frac{\hat{\Re}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{|\Re|}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
Question: is the following mathematically ok?
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iint \rho\left(\mathbf{r}^{\prime}\right)\left(-\nabla \frac{1}{|\Re|}\right) d \tau^{\prime}=-\nabla \frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\Re|} d \tau^{\prime}$
A) Yes
B) No
C) ???

Which of the following electrostatic fields could exist in a finite region of space that contains no charges?

A) $\operatorname{Axyz}(\hat{i}+\hat{j})$
B) $A(x z \hat{i}-x z \hat{j})$
C) $A(-x y \hat{j}+x z \hat{k})$
D) None of these
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{gathered}
\mathbf{E}(\mathbf{r})=-\nabla \frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\Re|} d \tau^{\prime} \\
\mathbf{E}(\mathbf{r})=-\nabla V(\vec{r}) \\
V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\Re|} d \tau^{\prime} \quad+c
\end{gathered}
$$

Summary:
Def of potential: $\quad V(\mathbf{r}) \equiv-\int_{\text {origin }}^{\mathbf{r}} \vec{E}\left(r^{\prime}\right) \bullet d \vec{r}^{\prime}$
How do you compute it: $\quad V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\|\Re\|} d \tau^{\prime}$
What good is it? $\quad \mathbf{E}(\mathbf{r})=-\nabla V(\vec{r})$
Where did it come from? $\quad \nabla \times \overrightarrow{\mathbf{E}}(\mathbf{r})=0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

