A uniformly charged ring, in the xy plane, centered on the origin, has radius a and total charge Q . $\mathrm{V}(\mathrm{r}=\infty)=0$.
What is the voltage at z on the z-axis?

E) None of these

A uniformly charged ring, in the xy plane, centered on the origin, has radius a and total charge Q. $V(r=\infty)=0$. \qquad
What is the voltage at z on the z-axis?

\qquad
\qquad
\qquad
\qquad

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime}
$$

\qquad
(with $\vec{\Re}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)$) \qquad
It is also true that $\frac{\hat{\mathfrak{R}}}{\mathfrak{R}^{2}}=-\nabla \frac{1}{|\mathfrak{R}|}$
where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ \qquad
Question: is the following mathematically ok?
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \rho\left(\mathbf{r}^{\prime}\right)\left(-\nabla \frac{1}{|\Re|}\right) d \tau^{\prime}=-\nabla \frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\Re|} d \tau^{\prime}$
\qquad
\qquad
A) Yes
B) No
C) ???

$$
\mathbf{E}(\mathbf{r})=-\nabla \frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\Re|} d \tau^{\prime}
$$

$$
\mathbf{E}(\mathbf{r})=-\nabla V(\vec{r})
$$

$$
V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\Re|} d \tau^{\prime} \quad+c
$$

\qquad
\qquad

Summary:
Def of potential: $V(\mathbf{r}) \equiv-\int_{\mathbf{r}_{0}}^{\mathbf{r}} \vec{E}\left(r^{\prime}\right) \bullet d \vec{r}^{\prime}$
How do you compute it: $\quad V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\|\Re\|} d \tau^{\prime}$
What good is it? $\quad \mathbf{E}(\mathbf{r})=-\nabla V(\vec{r})$
Where did it come from? Which by Stoke's theorem is mathematically equivalent to:$\quad \underset{\text { any loop }}{ } \quad \oint_{\mathbf{E}(\mathbf{r})=0}^{\overrightarrow{\mathbf{E}}(\mathbf{r}) \bullet d \mathbf{r}=0}$

\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{aligned} & \text { Which by Stoke's theorem is } \\ & \text { mathematically equivalent to: }\end{aligned} \oint \overrightarrow{\mathbf{E}}(\mathbf{r}) \bullet d \mathbf{r}=0$ \qquad
\qquad

\qquad
\qquad following parts:
A) I'm now starting (click right away!) \qquad
C) I'm starting iii
D) I'm starting the $2^{\text {nd }}$ page \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

	$\begin{gathered} \mathbf{E}(\mathbf{r})=-\nabla V(\vec{r}) \\ V(\mathbf{r})=-\int_{\text {dexin }}^{x} E\left(r^{\prime}\right) \cdot d r^{\prime} \end{gathered}$
Could this be a plot of $\|E\|(r)$? $\operatorname{Or} V(r)$? (for SOME physical situation?)	
A) Could be E(r), or V(r)	
B) Could be E(r), but can't be V(r)	
C) Can't be E(r), could be V(r)	
D) Can't be either	E) ???

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The voltage is zero at a point in space.
You can conclude that :
A) The E-field is zero at that point.
B) The E-field is non-zero at that point
C) You can conclude nothing at all about the E-
field at that point

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The voltage is constant everywhere along a line in space.

You can conclude that :
A) The E-field has constant magnitude along that line.
B) The E-field is zero along that line.
C) You can conclude nothing at all about the magnitude of \mathbf{E} along that line.

```
\({ }^{2.45}\) Given a spherical SHELL with uniform surface charge density \(\sigma\) (no other charges anywhere else) what can you say about the potential V inside this sphere? (Assume as usual, \(\mathrm{V}(\infty)=0\) )
A) \(V=0\) everywhere inside
B) \(V=\) non-zero constant everywhere inside
C) \(V\) must vary with position, but is zero at the center.
D) None of these!
```

\qquad

