
\qquad

Have you looked at the 3310 course web page yet? \qquad
A) Yes
B) Not yet

Do office hours (homework help sessions) \qquad
Mon and Tues, 4-5+ PM
work for you?
(HW is due Wed at the start of class)
\qquad
A) Yes, one or both is ok
B) Yes, but only if the " + " extends past 5 \qquad
C) No, I really want a different day/time
D) No, but I'm unlikely to attend so it's ok
\qquad with me as it is...

Thinking of what you want to get out of your college education and this course, which of the following is most important to you?
A) Acquiring information (facts, principles, concepts)
B) Learning how to use information and knowledge in new situations
C)Developing lifelong learning skills

All three of these goals are clearly important. However, which of these three goals do you think you can make on our own (say, before class)?
A)Acquiring information (facts, principles, concepts)
B) Learning how to use information and knowledge in new situations
C)Developing lifelong learning skills

In cylindrical (2D) coordinates, what would be the correct description of the position vector " r " of the point P shown at $(x, y)=(1,1)$
A) $\overrightarrow{\mathbf{r}}=\sqrt{2} \hat{s}$
B) $\overrightarrow{\mathbf{r}}=\sqrt{2} \hat{s}+\pi / 4 \hat{\varphi}$
C) $\overrightarrow{\mathbf{r}}=\sqrt{2} \hat{s}-\pi / 4 \hat{\varphi}$
D) $\overrightarrow{\mathbf{r}}=\pi / 4 \hat{\varphi}$
E) Something else entirely

\qquad

A point charge (q) is located at \qquad position \mathbf{R}, as shown. What is $\rho(\mathbf{r})$, the charge density in all space? \qquad
A) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{R}})$
B) $\rho(\overrightarrow{\mathbf{r}})=q \delta(\overrightarrow{\mathbf{r}})$
C) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{R}})$
D) $\rho(\overrightarrow{\mathbf{r}})=q \delta(\overrightarrow{\mathbf{R}}-\overrightarrow{\mathbf{r}})$
E) None of these/more than one/???

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
A) non-zero divergence, but zero curl.
B) zero divergence, but non-zero curl.
C) non-zero divergence, and non-zero curl. D) zero divergence, and zero curl. \qquad
E) Impossible to predict, you need a formula!

Which of the following two fields \qquad has zero divergence?

\qquad
\qquad
\qquad
A) Both do
B) Only I is zero
C) Only II is zero
D) Neither is zero
E) ??

\qquad
\qquad

What is the divergence of this vector \qquad field, in the region shown below?

A) Divergence is zero everywhere
B) Divergence is non-zero everywhere
C) Divergence is non-zero, but only at certain special points \qquad
D) We need a formula to decide for sure

Which of the following two fields

\qquad has zero curl?

A) Both do
B) Only I is zero
C) Only II is zero
D) Neither is zero
E) ??

Which of the following could be a static

 physical E field in a small region?
A) Both
B) Only I
C) Only II
D) Neither
E) ?? the region shown below? \qquad

A. non-zero everywhere
B. Non-zero at a limited set of points
C. zero curl everywhere
D. We need a formula to decide for sure

What is the curl of this vector field, in \qquad the region shown below?

A. non-zero everywhere
B. Non-zero at a limited set of points
C. zero curl everywhere shown
D. We need a formula to decide for sure

