$$
\text { Coulomb's law: } \quad \overrightarrow{\mathbf{F}}(\text { by } 1 \text { on } 2)=\frac{k q_{1} q_{2}}{\Re_{12}^{2}} \hat{\Re}_{12}
$$

\qquad In the fig, q_{1} and q_{2} are 2 m apart.
Which arrow can represent $\quad \hat{\mathfrak{R}}_{12}$?

D) More than one (or NONE) of the above
E) You can't decide until you know if q_{1} and q_{2} are the same or opposite signed charges

\qquad

What is $\hat{\mathfrak{R}}_{12}$ ("from 1 to 2") here? \qquad $\left.\mathbf{r}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \xrightarrow[+\mathrm{q})\right]{\overrightarrow{\mathfrak{R}_{12}}=\mathbf{r}_{2}-\mathbf{r}_{1}} \xrightarrow{-\mathrm{q}}$ $\hat{A}=\vec{A} /|A| \quad r_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
A) $\left(x-x_{1}, y-y_{1}\right)$
B) $\left(x_{1}-x, y_{1}-y\right)$
C) $\frac{\left(x-x_{1}, y-y_{1}\right)}{\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}}$
C) $\frac{\left(x_{1}-x, y_{1}-y\right)}{\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}}$
E) None of these

$$
\begin{aligned}
& \text { What is } \hat{\mathfrak{R}}_{1}\left(\text { from } r_{1} \text { to } r\right) ? \\
& \begin{array}{ll}
\mathbf{r}_{1}=\left(x_{1}, y_{1}\right) & \mathfrak{R}_{1}=\mathbf{r}-\mathbf{r}_{1} \\
\text { A) }\left(\mathrm{x}-\mathrm{x}_{1}, \mathrm{y}-\mathrm{y}_{1}\right) & \text { B) }\left(\mathrm{x}_{1}-\mathrm{x}, \mathrm{y}_{1}-\mathrm{y}\right) \\
\text { C }=\vec{A} /|A| \\
\text { C) } \frac{\left(\mathrm{x}-\mathrm{x}_{1}, \mathrm{y}-\mathrm{y}_{1}\right)}{\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}}} & \text { D) } \frac{\left(\mathrm{x}_{1}-\mathrm{x}, \mathrm{y}_{1}-\mathrm{y}\right)}{\sqrt{\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}}}
\end{array}
\end{aligned}
$$

E) None of these/not sure/it depends...

Can I always use the Coulomb law in this form to calculate the force on a small charge at any point in vacuum if I know the location of all charges for all times? (Assume no conductors or dielectrics are present.)
A) Yes, of course! It's a law and laws are always true.
B) No. The coulomb law works only for specific situations.
C) I don't know and my neighbor has no clue either.

23
Two charges +q and -q are on the y -axis,
symmetric about the origin.
The direction of the force on a test charge -q
at point A is
A. Up
B. Down
C.Left
D.Right
E. Some other direction, or $\mathrm{E}=0$, or ambiguous

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two charges $+q$ and $-q$ are on the y-axis, symmetric about the origin.
Point A is an empty point in space on the x-axis. The direction of the E field at A is...
A. Up
B. Down
C. Left
D. Right

E. Some other direction, or $\mathrm{E}=0$, or ambiguous \qquad

5 charges, q, are arranged in a regular pentagon, as shown.
What is the E field at the center?

B) Non-zero
C) Really need trig and a calculator to decide

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
$\stackrel{2.11}{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\int \frac{\lambda}{4 \pi \varepsilon}$
A) $\int \frac{d y^{\prime} x}{x^{3}}$
B) $\int \frac{d y^{\prime} x}{\left(x^{2}+y^{\prime 2}\right)^{3 / 2}}$
C) $\int \frac{d y^{\prime} y^{\prime}}{x^{3}}$

D) $\int \frac{d y^{\prime} y^{\prime}}{\left(x^{2}+y^{\prime 2}\right)^{3 / 2}}$
$E)$ Something else
\qquad
\qquad
\qquad

To find the E - field at P from a thin \qquad ring (radius R, uniform linear charge density λ):
$\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\Re^{2}} \hat{\Re} \lambda \mathrm{dl}^{\prime}$
what is $\overrightarrow{\mathfrak{R}}$?

\qquad
\qquad
\qquad
\qquad
\qquad
E) NONE of the arrows shown
\qquad correctly represents $\overrightarrow{\mathfrak{R}}$

To find the E - field at P from a thin ring (radius R, uniform linear charge density λ):
$\mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\mathfrak{R}^{2}} \hat{\Re} \lambda \mathrm{dl} \mathrm{\prime} \quad \mathrm{P}=(0,0, z)$ what is \mathfrak{R} ?
A) $\sqrt{R^{2}+z^{2}}$
\qquad
B) R
$\begin{array}{ll}\text { C) } \sqrt{d l^{2}+z^{2}} & \text { D) } z\end{array}$
E) Something completely different!!

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Which of the following are vectors?
(I) Electric field
\qquad
(II) Electric flux
(III) Electric charge
\qquad
\qquad
A) (I) only
B) (I) and (II) only
C) (I) and (III) only
D) (II) and (III) only
E) (I), (II), and (III)

\qquad

A Gaussian surface which is not a sphere has a single charge (q) inside it, not at the
\qquad center. There are more charges outside. What can we say about total electric flux
\qquad through this surface $\oint \vec{E} \bullet d \vec{a}$?
A) It is $q / \varepsilon 0$
B) We know what it is, but it is NOT $q / \varepsilon 0$
C) Need more info/details to figure it out.


```
2.20
You have an E field given by
    E=cr/\varepsilon
                    r = spherical radius vector)
    What is the charge density }\rho(r)\mathrm{ ?
```

A) c
B) cr
C) 3 c
D) $3 \mathrm{cr}^{\wedge} 2$
E) None of these is correct
Given $E=c r / \varepsilon_{0}$,
$(c=$ constant, $\mathbf{r}=$ spherical radius vector $)$
We just found $\rho(r)=3 c$.
What is the total charge Q enclosed by
imaginary sphere centered on the origin
of radius R ?
Hint: Can you find it two DIFFERENT ways?

A) $(4 / 3) \pi c$	B) $4 \pi c$
C) $(4 / 3) \pi c R^{\wedge} 3$	D) $4 \pi c R^{\wedge} 3$
E) None of these is correct	

A) $(4 / 3) \pi \mathrm{C}$
C) $(4 / 3) \pi c R^{\wedge} 3$
D) $4 \pi c R^{\wedge} 3$
\qquad c = constant, $\mathbf{r}=$ spherical radius vector) We just found $\rho(r)=3 c$. \qquad
\qquad
\qquad
\qquad
\qquad
E) None of these is correct

What are the units of $\delta(x)$ if x is measured in meters?
A) δ is dimension less ('no units')
B) $[\mathrm{m}]$: Unit of length
C) $\left[\mathrm{m}^{2}\right]$: Unit of length squared
D) $\left[m^{-1}\right]$: $1 /$ (unit of length)
E) $\left[\mathrm{m}^{-2}\right]$: 1 / (unit of length squared)

What are the units of $\delta^{3}(\overrightarrow{\mathbf{r}})$ if the components of \vec{r} are measured in
\qquad meters?
A) [m]: Unit of length
B) $\left[\mathrm{m}^{2}\right]$: Unit of length squared
\qquad
C) $\left[m^{-1}\right]$: $1 /$ (unit of length)
D) $\left[\mathrm{m}^{-2}\right]$: $1 /$ (unit of length squared)
E) None of these.

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{2.24}$
A point charge q is at position \mathbf{R}, as shown.
What is $\rho(\mathbf{r})$, the charge density in all space?
A) $\rho(\overrightarrow{\mathbf{r}})=\mathrm{q} \delta^{3}(\overrightarrow{\mathbf{R}})$
B) $\rho(\overrightarrow{\mathbf{r}})=\mathrm{q} \delta^{3}(\overrightarrow{\mathbf{r}})$
C) $\rho(\overrightarrow{\mathbf{r}})=\mathrm{q} \delta^{3}(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{R}})$
D) $\rho(\overrightarrow{\mathbf{r}})=\mathrm{q} \delta^{3}(\overrightarrow{\mathbf{R}}-\overrightarrow{\mathbf{r}})$
\qquad
\qquad
\qquad
B) $\rho(\overrightarrow{\mathbf{r}})=\mathrm{q} \delta^{3}(\overrightarrow{\mathbf{r}})$
C) $\rho(\overrightarrow{\mathbf{r}})=q \delta^{3}(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{R}})$
origin \qquad
E) None of these or More than one of these \qquad
\qquad

Mo.1
Consider the vector field
where $\mathrm{C}=\mathrm{c}$ constant .
The divergence of this vector field is:
A) Zero everywhere except at the origin
B) Zero everywhere including the origin
C) Non-zero everywhere, including the origin.
D) Non-zero everywhere, except at origin (zero at origin)
(No fair computing the answer. Get answer from your brain.)

\qquad
${ }_{A}^{22 \AA}$ spherical shell has a uniform positive charge density on its surface. (There are no other charges around)
\qquad

What is the electric field inside the sphere?

A: $E=0$ everywhere inside
B : E is non-zero everywhere in the sphere
 C : $\mathrm{E}=0$ only at the very center, but non-zero elsewhere inside the sphere.
D: Not enough info given

\qquad
\qquad

2.29
ait
If we place a charge Q just outside an insulating,
spherical shell (fixing all surface charges uniformly
around the sphere)
What is the electric field
inside the sphere?
A: 0 everywhere inside
B: non-zero everywhere
in the sphere
C: Something else
D: Not enough info given

\qquad

A dipole sits near the origin. We draw an imaginary Gaussian sphere (radius r) around it.
Gauss' law says: $\oint_{s u f f} \vec{E} \cdot d \vec{a}=\frac{Q_{\text {inside }}}{\varepsilon_{0}}$
Do we conclude that $\mathrm{E}=0$ everywhere around that sphere?
A)Yes, $\mathrm{E}=0$ everywhere
B) No, E is not 0 at all points on that sphere.

MD16-1
Consider the z-component of the electric field E_{z} at \qquad distance z above the center of a uniformly charged disk (charge per area $=+\sigma$, radius $=R$).

In the limit, $z \ll R$, the value of E_{z} approaches
A) zero \qquad
B) a positive constant
C) a negative constant
D) +infinity
E) -infinity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

229
at
al we place a charge Q just outside an insulating,
spherical shell (fixing all surface charges uniformly
around the sphere)
What is the electric field
inside the sphere?
A: 0 everywhere inside
B: non-zero everywhere
in the sphere
C: Something else
D: Not enough info given

\qquad
If we place a charge Q just outside an insulating, spherical shell (fixing all surface charges uniformly around the sphere) \qquad
What is the electric field inside the sphere?
A: 0 everywhere inside
B: non-zero everywhere in the sphere
C: Something else \qquad
D: Not enough info given

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { 2.42 } \quad \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathfrak{R}}}{\mathfrak{R}^{2}} d \tau^{\prime} \\
& \overrightarrow{\mathfrak{R}}=\mathbf{r}-\mathbf{r}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right) \\
& \text { (with } \quad \frac{\hat{\mathfrak{R}}}{\Re^{2}}=-\nabla \frac{1}{|\mathfrak{R}|} \\
& \text { However, } \quad \\
& \text { where } \quad \nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
Question: is the following mathematically ok?
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \rho\left(\mathbf{r}^{\prime}\right)\left(-\nabla \frac{1}{|\mathfrak{R}|}\right) d \tau^{\prime}=-\nabla \frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{|\mathfrak{R}|} d \tau^{\prime}$
\qquad
A) Yes
B) No
C) ???
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad $\begin{aligned} & \text { Consider an infinitesimal path element } \mathrm{dL} \mathrm{y} \\ & \text { directed radially inward, toward the origin } \mathrm{as} \\ & \text { shown. }\end{aligned} \begin{aligned} & \text { In spherical coordinates, the }\end{aligned}$ correct expression for dL is:
A) $d \vec{L}=+d r \hat{r}$
B) $d \overrightarrow{\mathrm{~L}}=-\mathrm{dr} \hat{\mathrm{r}}$
C) Neither of these.
cartesian: $d \overrightarrow{\mathrm{~L}}=\mathrm{dx} \hat{\mathrm{x}}+\mathrm{dy} \hat{\mathrm{y}}$ \qquad
spherical: $d \vec{L}=d r \hat{r}+r d \theta \hat{\theta}+r \sin \theta d \phi \hat{\phi}$

A uniformly charged ring, in the xy plane, \qquad centered on the origin, has radius a and total charge Q . $\mathrm{V}(\mathrm{r}=\infty)=0$.
What is the voltage at z on the z-axis?

A) $\frac{k Q}{a} \quad$ B) $\frac{k Q}{z}$
C) $\frac{k Q}{\sqrt{a^{2}+z^{2}}}$
D) $\frac{k Q}{a^{2}+z^{2}}$
E) None of these
2.43

Could the following electrostatic field possibly exist in a finite region of space that contains no charges? (A , and c are constants with appropriate units)

$$
\overrightarrow{\mathbf{E}}=A\left(\frac{z^{2}}{2} \hat{i}-c y \hat{j}+x z \hat{k}\right)
$$

A) Sure, why not?
B) No way
C) Not enough info to decide
Could this be a plot of |E|(r)? Or
$\mathrm{V}(\mathrm{r})$? (for SOME physical situation?)

A) Could be $\mathrm{E}(\mathrm{r})$, or $\mathrm{V}(\mathrm{r})$
$\left.\begin{array}{l}\text { B) Could be } \mathrm{E}(\mathrm{r}) \text {, but can't be } \mathrm{V}(\mathrm{r}) \\ \text { C) Can't be } \mathrm{E}(\mathrm{r}) \text {, could be } \mathrm{V}(\mathrm{r}) \\ \text { D) Can't be either }\end{array} \quad \mathrm{E}\right)$???

246
Why is $\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{L}} \quad$ in electrostatics?
a) Because $\nabla X \vec{E}=0$
b) Because E is a conservative field
c) Because the potential between two points is
independent of the path
d) All of the above
e) NONE of the above - it's not true!

The voltage is zero at a point in space.

You can conclude that : \qquad
A) The E-field is zero at that point.
B) B) The E-field is non-zero at that point
C) You can conclude nothing at all about the Efield at that point
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The voltage is constant everywhere along a line in space.

\qquad
You can conclude that:
A) The E-field has constant magnitude along that line.
B) The E-field is zero along that line.
C) You can conclude nothing at all about the \qquad magnitude of \mathbf{E} along that line.

[^0]\qquad

\qquad

[^1]A) $V=0$ everywhere inside
B) $V=$ non-zero constant everywhere inside
C) V must vary with position, but is zero at the center. \qquad
D) None of these.

Why is $\oint \vec{E} \cdot d \vec{l}=0 \quad$ in electrostatics?
a) Because $\nabla \times \overrightarrow{\mathrm{E}}=0$
b) Because E is a conservative field
c) Because the potential (voltage) between
two points is independent of the path
d) All of the above
e) NONE of the above - it's not true!

\qquad
\qquad

Three identical charges $+q$ sit on an equilateral

triangle.
What would be the final KE of the top charge if you released all three?

\qquad
\qquad
\qquad
A) $\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{\mathrm{a}}$
B) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{3 a}$
C) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{a}$
D) $\frac{1}{4 \pi \varepsilon_{0}} \frac{3 q^{2}}{a}$
E) None of these
\qquad

[^2]
Does energy superpose?

That is, if you have one system of charges with total stored energy W1, and a second charge distribution with W2... if you superpose these charge distributions, is the total energy of the new system W1+W2?
A) Yes
B) No

Two charges, $+q$ and $-q$, are a distance r apart. As the charges are slowly moved together, the total field energy \qquad

$$
\frac{\varepsilon_{0}}{2} \int E^{2} d \tau
$$

A) increases
B) decreases
C) remains constant
(Come up with two different reasons for your answer.)

A parallel-plate capacitor has $+Q$ on one plate, $-Q$ on the other. The plates are isolated so the charge Q cannot change. As the plates are pulled apart, the total electrostatic energy stored in the capacitor
A) increases
B) decreases
C) remains constant. \qquad
(Come up with two different reasons for your answer.)

A parallel plate capacitor is attached to a battery which maintains a constant voltage difference V between the capacitor plates. While the battery is attached, the plates are pulled apart. The electrostatic energy stored in the capacitor

> A) increases
> B) decreases
> C) stays constant.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^3]\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A neutral copper sphere has a spherical hollow \qquad in the center. A charge $+q$ is placed in the center of the hollow. What is the total charge on the outside surface of the copper sphere?
\qquad (Assume Electrostatic equilibrium.)

A point charge $+q$ is near a neutral copper sphere with a hollow interior space. In equilibrium, the surface charge density σ on the interior of the hollow space is..
A)Zero everywhere

B) Non-zero, but with zero net total charge on interior surface
$+q$
C) Non-zero with non-zero net total charge on interior surface.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^4]\qquad
\qquad

A) $|E|=k q_{c} / r^{2}$
B) $|E|=k\left(q_{c}-Q\right) / r^{2}$
C) $|E|=0$
D) None of these! / it's hard to compute

2.30b
A HOLLOW copper sphere has total charge $+Q$.
A point charge +q sits outside.
A charge, q_{c}, is in the hole, SHIFTED right a bit.
(Assume static equilibrium.)
What does the E field look like in the hole?
:---
straight away from q_{c} right up to the wall) Bomplicated/ it's hard to compute

Consider two situations, both with very large (effectively infinite) planes of charge, with the same uniform charge per area σ :
I. A plane of charge completely isolated in space:
II. A plane of charge on the surface of a metal in equilibrium:

Which situation has the larger electric field above the plane?
A) I B) II C) I and II have the same size E-field
\qquad

We have a large copper plate with uniform surface charge density σ. Imagine the Gaussian surface drawn below. Calculate the E-field a small distance s above the conductor surface.
A) $|\mathrm{E}|=\sigma / \varepsilon_{0}$
B) \mid ㅌ| $=\sigma / 2 \varepsilon_{0}$
C) \mid 티 $=\sigma / 4 \varepsilon_{0}$
D) $|\mathrm{E}|=\left(1 / 4 \pi \varepsilon_{0}\right)\left(\sigma / \mathrm{s}^{2}\right)$
E) \mid ㅌ| $=0$

```
2.49 Given a pair of very large, flat, conducting capacitor plates with surface charge densities \(+/-\sigma\), what is the \(E\) field in the region between the plates?
```



```
A) \(\sigma / 2 \varepsilon_{0}\)
B) \(\sigma / \varepsilon_{0}\)
C) \(2 \sigma / \varepsilon_{0}\)
```



```
D) \(4 \sigma / \varepsilon_{0}\)
E) Something else
```

[^5]

2.51	
You have two parallel plate capacitors, both with the same area and the same gap size.	
Capacitor \#1 has twice the charge of \#2. Which has more capacitance? More stored energy?	
A) $\mathrm{C} 1>\mathrm{C} 2, \mathrm{PE} 1>\mathrm{PE} 2$	\#1
B) $\mathrm{C} 1>\mathrm{C} 2, \mathrm{PE} 1=\mathrm{PE} 2$	+2Q
C) $\mathrm{C} 1=\mathrm{C} 2, \mathrm{PE} 1=\mathrm{PE} 2$	-2Q
D) $\mathrm{C} 1=\mathrm{C} 2, \mathrm{PE} 1>\mathrm{PE} 2$	
E) Some other combination!	\#2
	+Q
	-Q

\qquad

\qquad
\qquad
\qquad
A parallel plate capacitor is attached to a battery which maintains a constant voltage \qquad difference V between the capacitor plates.
\qquad pulled apart. The electrostatic energy stored in
\qquad
A) increases
B) decreases
C) stays constant.

Two very strong (big C) ideal \qquad capacitors are well separated. What if they are connected by one thin \qquad conducting wire, is this electrostatic situation physically stable? \qquad

\qquad
\qquad
\qquad
\qquad

[^0]: We usually choose $\mathrm{V}(\mathrm{r} \rightarrow \infty) \equiv 0$ when calculating the potential of a point charge to be $V(r)=k q / r$. How does the potential $V(r)$ change if we choose our reference point to be $V(R)=0$ where R is closer to $+q$ than r.

 ## (+a) $\mathrm{R} \quad \mathrm{r}$

 ∞

 A $V(r)$ is positive but smaller than $k q / r$ B $V(r)$ is positive but larger than kq / r
 C $V(r)$ is negative
 D $\mathrm{V}(\mathrm{r})$ doesn't change (V is independent of choice of reference)

[^1]: ${ }^{2.45}$ Given a spherical SHELL with uniform surface charge density σ (no other charges anywhere else) what can you say about the potential V inside this sphere? (Assume as usual, $V(\infty)=0$)

[^2]: During the last class we found that the energy stored in a particular arrangement of charges can be expressed as:

 $$
 \begin{array}{ll}
 & W_{\text {sys }}=1 / 2 \sum q_{i} \cdot V_{i}\left(r_{i}\right) \\
 \text { or as: } \quad W_{\text {syy }}=1 / 2 \int E^{2} d \tau^{i}
 \end{array}
 $$

 Why can the first expression be negative, but the second one is positive (or zero)?

 A - We did a mistake in the derivation.
 B -The second expression also contains the energy required to make the charges.
 C - Energy is always a positive quantity, which we expressed by squaring the E -field.
 D - Must be something else.
 E - How should I know. I don' t do the reading assignments.

[^3]: ${ }^{2.30}$
 A copper sphere (radius A) has total charge + Q. A separate point charge $+q$ sits outside. (We are in static equilibrium.) What is the magnitude of the E-field at the center of the sphere?
 A) $|E|=k q / r^{2}$
 B) $|E|=k q / A^{2}$
 C) $|E|=k(q-Q) / r^{2}$
 D) $|E|=0$
 E) None of these!

[^4]: ${ }^{2.30 a}$ A HOLLOW copper sphere has total charge +Q. A point charge $+q$ sits outside.
 A charge q_{c} is in the hole at the center.
 (As usual, assume static equilibrium.)
 What is the magnitude of the E-field a distance r from q_{c}, (but, still inside the hole).

[^5]: ${ }^{2.49 \mathrm{~m}}$ Given a pair of very large, flat, conducting capacitor plates with total charges $+Q$ and $-Q$. Ignoring edges, what is the equilibrium distribution of the charge? $\quad+\mathrm{Q}$
 A) Throughout each plate $\quad-Q$
 B) Uniformly on both side of each plate
 C) Uniformly on top of $+Q$ plate and bottom of $-Q$ plate
 D) Uniformly on bottom of $+Q$ plate and top of $-Q$ plate
 E) Something else

