
\qquad

Poisson's equation tells us that

\qquad

$$
\nabla^{2} V=-\frac{\rho}{\varepsilon_{0}}
$$

If the charge density throughout some volume is zero, what else must be true throughout that volume:
A) $V=0$
B) $\mathrm{E}=0$
C) Both V and E must be zero \qquad
D) None of the above is necessarily true \qquad
Why is $\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{L}}=0$ in electrostatics?
a) Because $\nabla \mathrm{X} \vec{E}=0$
b) Because E is a conservative field
c) Because the potential between two points is
independent of the path
d) All of the above
e) NONE of the above - it's not true!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

A region of space contains no charges.
3.2 The boundary has $\mathrm{V}=0$ everywhere.

What can I say about V in the interior?
\qquad
A) Not much, there are lots of possibilities for $\mathrm{V}(\mathrm{r})$ in there
B) $V(r)=0$ everywhere in the interior.
C) $V(r)=$ constant everywhere in the interior
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
3.3 Two very strong (big C) ideal capacitors are well separated.
If they are connected by 2 thin conducting \qquad wires, as shown, is this electrostatic

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General properties of solutions of $\nabla^{2} \mathbf{V}=\mathbf{0}$

(1) V has no local maxima or minima inside. Maxima and minima are located on surrounding boundary. \qquad
(2) V is boring. (I mean "smooth \& continuous" everywhere).
(3) $\mathrm{V}(\mathbf{r})=$ average of V over any surrounding sphere:

$$
V(\vec{r})=\frac{1}{4 \pi R^{2}} \cdot \oint_{\substack{\text { Sphere with } \\ \text { radius } \\ \text { around } \vec{r}}} \text { Vda }
$$

(4) V is unique: The solution of to the Laplace eq. is uniquely determined if V is specified on the boundary surface around the volume.
${ }_{5}$ If you put a + test charge at the center of this cube of charges, could it be in stable equilibrium?
A) Yes
B) No
C) ???

Earnshaw's Theorem

\qquad
\qquad
METHOD OF IMAGES
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Class Activities: Method of
Whiteboards
Method of Im
Iset up the "method of images" problem (with $+Q$ above, and $-Q$ below), and had
THEM, in pairs, write the formula tor $V(x, y, z)$. (They struggled surroisingly with
yourself: What is the idea bethind the method of images? What does it
accomplish?What is its relation to the uniquenesst theorem?" and collected their
Iset up the "method of images" problem (with $+Q$ above, and $-Q$ below), and had
THEM, in pairs, write the formula tor $V(x, y, z)$. (They struggled surprisingly wither
Iset up the "method of images" problem (with $+Q$ above, and $-Q$ below), and had
THEM, in pairs, write the formula tor $V(x, y, z)$. (They struggled surprisingly wither
this!) I then had them evaluate $V(x, y, 0)$ and V (anything \rightarrow infinity). Lasty, Ih
this!) I then had them evaluate $V(x, y, 0)$ and V (anything \rightarrow infinity). Lasty, Ih
the laster groups work out Ex, Ey, and/or Ez, and evaluate it on the plane
the laster groups work out Ex, Ey, and/or Ez, and evaluate it on the plane
Writing
Writing
What is Method of Images?
What is Method of Images?
I posted this "On paper (don't forget your namel) in your own words (by
I posted this "On paper (don't forget your namel) in your own words (by
yourself: What is the idea behind the method of images? What does it
accomplish?What is is ts relation to the uniqueness theorem?" and collected their
yourself: What is the idea behind the method of images? What does it
accomplish?What is is ts relation to the uniqueness theorem?" and collected their

Images

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.7 A point charge +Q sits above a very large grounded conducting slab.
What is $\mathrm{E}(\mathrm{r})$ for points above the slab? \qquad

Whiteboard:

Calculate voltage for 2 point \qquad charges a distance "d" above and below the origin. Where is $V(r)=0$?
\qquad
\qquad
\qquad
\qquad
B) Something more complicated

\qquad
A) Simple Coulomb's law:

$$
\vec{E}(\vec{r})=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\Re}{\Re^{3}} \quad \text { with } \vec{\Re}=(\vec{r}-d \hat{z})
$$

\qquad
3.8 A point charge +Q sits above a very large grounded conducting slab. What's the electric force on $+Q$?
\qquad
A) 0
B) $\frac{Q^{2}}{4 \pi \varepsilon_{0}(2 d)^{2}}$ downwards
C) $\frac{Q^{2}}{4 \pi \varepsilon_{0} d^{2}}$ downwards
D) Something more complicated \qquad

+ +Q d z \qquad

\qquad
\qquad
\qquad at right angles. How many image charges are needed to solve for $V(\mathbf{r})$? \qquad

\qquad
- +Q
C) three
D) more than three
E) Method of images won't work here

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Is this a stable charge distribution for two neutral, conducting spheres?

A) Yes
B) No
C) ???

SEPARATION OF

 VARIABLESClass Activities: Sep of Var (1)

```
Question for Lecture(from UIUC)
.)What are the physical reasons/motivation for wanting to solve the Laplace
```



```
maxima or minima or V(r); all extrema of V(r) must occur at
M, maxima or minmator, (r):
NWiteboards
Draw sinh and cosh, is it even/odd, what's the curvature, behaviour as }\textrm{x}=0\mathrm{ ,
Show my mathematica, solution in powerpoint(Idid *oot show the 2D "O-Vo-0
Whiteboards
Moundary condmons on 2 (tydents have is an inability to recreate the
mathematical steps to determine the boundary conditions on the paralel a
perpendicular components of E. Atter watching 3 continuous semesters of this
low, course, Istrongly recommend having a whiteboard or worksheet activity where
Simulation
Show the PPET Fourier sim. Also show the mathematic notebook I made where
htr://pheot.colorado.edulindex.php
```

Class
Activities:
Sep of Var
(2)
Discussion
Discussion
Make up a function f(x) and a function g(y) and come up with a pair that satisfies
Make up a function f(x) and a function g(y) and come up with a pair that satisfies
T
T
Electric
Electric
Stuents working in small groups use Maxwel's equations to determine the
Stuents working in small groups use Maxwel's equations to determine the
Discussion
Discussion
T
T
Solution, much like in a Taylor expansion. How many terms should we keep to
Solution, much like in a Taylor expansion. How many terms should we keep to
Discussion
Discussion
Cartesian separation of variables
Cartesian separation of variables
Mectangular Pipe 2 is twice as wide as rectangular Pipe 1 and the shaded face is
Mectangular Pipe 2 is twice as wide as rectangular Pipe 1 and the shaded face is
solutionsta to Laplace's Equation be qualitatively different or similar?) This is
solutionsta to Laplace's Equation be qualitatively different or similar?) This is
Included in Chapter 3 clicker question document
Included in Chapter 3 clicker question document
Worksheet
Worksheet
Identitying separable differential equations
Identitying separable differential equations
htt://pubpages.unh.edu//dawnm/connectm\&m.htm
htt://pubpages.unh.edu//dawnm/connectm\&m.htm
l
l
\qquad

Class Activities: Sep of Var
(3) \qquad
\qquad
Tutorial
Laplace's Equation
Paul van Kampen -
Paul van Kampen - Dublin University (Tutorials 9-16, page 10)
whorial on Laplace's equation. Conducting cylinder in Efield. First describe
what tappens to the cyinder when placed in the E field. Do separation of

Griffiths by Inquiry (Lab 2): Laplace's Equation and Boundary Value
Grifitits by
problems
Grifitits by Inquiry (Lab 3): 20 Boundary Value problems in Cartesian
ordinates
Griffiths by Inquiry (Lab 4): 2 D Boundary Value problems in Cylindrical
Griffiths by Inquiry (Lab 5): 3D Boundary Value problems in electrostatics
CARTESIAN COORDINATES

Two solutions for positive C are $\sinh x$ and $\cosh x$:

Which is which?
A)Curve 1 is $\sinh x$ and curve 2 is $\cosh x$ B)Curve 1 is cosh x and curve 2 is $\sinh x$

Second uniqueness Theorem: In a volume surrounded by conductors and containing a specified charge density $\rho(r)$, the electric field is uniquely determined if the total charge on each conductor is given. (The region as a whole can be bounded by another conductor, or else unbounded.)

Griffiths, 3.1.6
\qquad

Say you have three functions $f(x), g(y)$ and $h(z)$.
$f(x)$ only depends on ' x ' but not on ' y ' and ' z '.
$g(y)$ only depends on ' y ' but not on ' x ' and 'z'.
$h(z)$ only depends on ' z ' but not on ' z ' and ' y '.

If $f(x)+g(y)+h(z)=0$ for all x, y, z, then:
A)All three functions are constants (i.e. they do not depend on x, y, z at all.)
B)At least one of these functions has to be zero everywhere.
C)All of these functions have to be zero
avervanhera
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.10 Suppose $V_{1}(\mathbf{r})$ and $V_{2}(\mathbf{r})$ are linearly independent functions which both solve Laplace's equation, $\nabla^{2} V=0$
\qquad

Does $\mathrm{aV}_{1}(\mathbf{r})+\mathrm{bV}_{2}(\mathbf{r})$ also solve it (with a and b constants)?
A) Yes. The Laplacian is a linear operator
B) No. The uniqueness theorem says this scenario is impossible, there are never two independent solutions!
C) It is a definite yes or no, but the reasons given above just aren't right!
D) It depends...
3.11 Given the two diff. eq's:
$\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}$
where $\mathrm{C}_{1}+\mathrm{C}_{2}=0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?

c. ${ }^{3.11}$ Given the two diff. eq's:

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $\mathrm{C}_{1}+\mathrm{C}_{2}=0$. Which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
A) x
B) y
C) $\mathrm{C}_{1}=\mathrm{C}_{2}=0$ here
D) It doesn't matter

3.11b Given the two diff. eq's:
$\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}$
where $\mathrm{C}_{1}+\mathrm{C}_{2}=0$. Which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
A) x
B) y
C) $\mathrm{C}_{1}=\mathrm{C}_{2}=0$ here
D) It doesn' t
\qquad matter

3.12

What is the value of

$\int_{0}^{2 \pi} \sin (2 x) \sin (3 x) d x ?$
A) Zero
B) π
C) 2π
D) $\pi / 2$
E) Something else/how could I possibly know this?

'Separation of Variables' is:

A) ... easy - piece of cake!
B) ... l' m getting the hang of it. More examples please (maybe in spherical coordinates?).
C) ... somewhat confusing.
D) ... really hard! What's going on?
E) Fourier' s trick just doesn' t make any sense (or other things, such as: 'Why did we write $V(x, y, z)=$ $X(x)^{*} Y(y) * Z(z)$?')

\qquad

\qquad

\qquad

Orthogonality

$$
\int_{-1}^{1} P_{l}(x) P_{m}(x) d x=\left\{\begin{array}{l}
\frac{2}{2 l+1} \text { if } 1=\mathrm{m} \\
0 \quad \text { if } 1 \neq \mathrm{m}
\end{array}\right.
$$

\qquad
\qquad
\qquad

With: $x=\cos \theta$ and: $d x=-\sin \theta d \theta$, we get:
$\int_{0}^{\pi} P_{l}(\cos \theta) P_{m}(\cos \theta) \sin \theta d \theta=\left\{\begin{array}{l}\frac{2}{2 l+1} \text { if } 1=\mathrm{m} \\ 0 \quad \text { if } 1 \neq \mathrm{m}\end{array}\right.$

> S.10 Suppose $\mathrm{V}_{1}(\mathbf{r})$ and $\mathrm{V}_{2}(\mathbf{r})$ are linearly independent functions which both solve Laplace's equation, $\nabla^{2} V=0$ Does a $V_{1}(\mathbf{r})+\mathrm{bV}_{2}(\mathbf{r})$ also solve it (with 'a' and 'b' constants)? A) Yes. The Laplacean is a linear operator B) No. The uniqueness theorem says this scenario is impossible, there are never two independent solutions! C) It is a definite yes or no, but the reasons given above just aren't right! D) It depends...
\qquad
3.15 Given $\nabla^{2} V=0$ in Cartesian coords, we separated $V(x, y, z)=X(x) Y(y) Z(z)$. Will this approach work in spherical coordinates, i.e. can we separate $\mathrm{V}(\mathrm{r}, \theta, \varphi)=\mathrm{R}(\mathrm{r}) \mathrm{P}(\theta) \mathrm{F}(\varphi)$?
A) Sure.
B) Not quite - the angular components cannot be isolated, e.g. $f(r, \theta, \varphi)=R(r) Y(\theta, \varphi)$
C) It won't work at all because the spherical form of Laplace's Equation has cross terms in it (see the front cover of Griffiths)
3.16 The Rodrigues formula for generating the Legendre Polynomials is

$$
P_{l}(x)=\frac{1}{2^{\prime}!!}\left(\frac{d y}{d x}\right)^{\prime}\left(x^{2}-1\right)^{\prime}
$$

If the Legendre polynomials are orthogonal, are the leading coefficients $\frac{1}{2^{2}!!}$ necessary to maintain orthogonality?
A) Yes, $\mathrm{f}_{\mathrm{m}}(\mathrm{x})$ must be properly scaled for it to be orthogonal to $f_{n}(x)$.
B) No, the constants will only rescale the integral
3.17 Given $V(\theta)=\sum_{l=0}^{\infty} C_{l} P_{l}(\cos \theta)$
(The P_{i} 's are Legendre polynomials.)
If we want to isolate/determine the coefficients
C_{1} in that series, multiply both sides by:
A) $P_{m}(\theta)$
B) $P_{m}(\cos \theta)$
C) $P_{m}(\theta) \sin \theta$
D) $P_{m}(\cos \theta) \sin \theta$
E) something entirely different

$$
\begin{aligned}
& \int_{0}^{\pi} P_{l}(\cos \theta) P_{m}(\cos \theta) \sin \theta d \theta= \begin{cases}\frac{2}{2 l+1} & \text { if } 1=\mathrm{m} \\
0 & \text { if } 1 \neq \mathrm{m}\end{cases} \\
& \int_{-1}^{1} P_{l}(x) P_{m}(x) d x= \begin{cases}\frac{2}{2 l+1} & \text { if } 1=\mathrm{m} \\
0 & \text { if } 1 \neq \mathrm{m}\end{cases}
\end{aligned}
$$

$3.18 \quad V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)$
Suppose V on a spherical shell is constant, i.e. $V(R, \theta)=V_{0}$.
Which terms do you expect to appear when finding V (outside) ?
A) Many A_{1} terms (but no B_{1} 's)
B) Many B_{1} terms (but no A_{1} 's)
C) Just A_{0}
D) Just B_{0}
E) Something else!!
$\mathrm{b}^{3.18} \quad V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)$
Suppose V on a spherical shell is constant, i.e. $\mathrm{V}(\mathrm{R}, \theta)=\mathrm{V}_{0}$.
Which terms do you expect to appear when finding V (inside) ?
\qquad
A) Many A_{1} terms (but no B_{1} 's)
B) Many B_{1} terms (but no A_{1} 's) \qquad
C) Just A_{0}
D) Just B_{0}
E) Something else!
3.19a
$P_{0}(\cos \theta)=1, \quad P_{1}(\cos \theta)=\cos \theta$
$P_{2}(\cos \theta)=\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}, \quad P_{3}(\cos \theta)=\frac{5}{2} \cos ^{3} \theta-\frac{3}{2} \cos \theta$
Can you write the function $V_{0}\left(1+\cos ^{2} \theta\right)$
as a sum of Legendre Polynomials?
$V_{0}\left(1+\cos ^{2} \theta\right)=\sum_{l=0}^{\infty} C_{l} P_{l}(\cos \theta)$
A) No, it cannot be done
B) It would require an infinite sum of terms
C) It would only involve P_{2}
D) It would involve all three of $\mathrm{P}_{0}, \mathrm{P}_{1}$ AND P_{2}
E) Something else/none of the above
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$19(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)$
Suppose V on a spherical shell is

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear
\qquad
\qquad when finding V (inside) ?
A) Many A_{1} terms (but no B_{1} 's)
B) Many B_{1} terms (but no A_{1} 's)
C) Just A_{0} and A_{2}
D) Just B_{0} and B_{2}
E) Something else! \qquad
$\int_{\mathrm{b}}^{3.19} \quad V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)$
Suppose V on a spherical shell is

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear when finding V (outside) ?
A) Many A_{1} terms (but no B_{\mid}'s) \qquad
B) Many B_{1} terms (but no A_{1} 's)
C) Just A_{0} and A_{2}
D) Just B_{0} and B_{2}
E) Something else!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
C)Partially. Can solve for C_{0} and C_{1}, but cannot solve for the
\qquad

3.20
How many boundary conditions
(on the potential V) do you use to
find V inside the spherical plastic
\quad shell?
A) 1
B) 2
C) 3
D) 4
E) It depends on $V_{0}(\theta)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.21	$\begin{array}{l}\text { How many boundary conditions } \\ \text { (on the potential } \mathrm{V} \text {) do you use to } \\ \\ \text { find } \mathrm{V} \text { inside the thin plastic }\end{array}$
	spherical shell?
A) 1	
B) 2	
C) 3	
D) 4	
E) depends on σ_{0}	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

${ }_{b}^{3.21}$
Does the previous answer change at all if you're asked for V outside the sphere?
a) yes
b) No

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Since the electric field is zero inside
this conducting sphere, and $\mathrm{V}=-\int \vec{E} \cdot d \vec{l}$, is $\mathrm{V}=0$ inside as well?
a) Yes
b) No

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Tutorial
Multipole
Oregon State University
Students work in small groups to create power series expansions for the elec-
trostatic potential due to two electric charges separated by a distance D.
Questions for
1.) Why should we care about approximate solutions for the scalar potential $\mathrm{V}(\mathrm{r})$
What are electric multipole moments of an electric charge distribution?
3.) When is it appropriate to use such approximate solutions for the scalar
potential $V(r)$ and/or $E(r)$?
\qquad
\qquad
\qquad
\qquad
\qquad

MD6 - 2
At the end of last class we derived the potential for a dipole at the origin pointing in the z-direction. Using $E=-\nabla V$ we can find the E-field in spherical coordinates:

$$
\stackrel{\mathrm{E}}{\text { dip }}(\mathrm{r})=\frac{\mathrm{p}}{4 \pi \varepsilon_{0} \mathbf{r}^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta})
$$

For the dipole $\mathbf{p}=\mathrm{q} \mathbf{d}$ shown, what does the formula predict for the direction of $\mathrm{E}(\mathrm{r}=0)$?

A)Down
B) $\cup p$
C) some other direction
D) The formula doesn't apply.

$$
\begin{aligned}
& \text { A) +q } \overrightarrow{\mathrm{d}} \\
& \text { B) }+2 \mathrm{q} \overrightarrow{\mathrm{~d}} \\
& \text { C) }-2 \mathrm{q} \overline{\mathrm{~d}} \\
& \text { D) zero } \\
& \text { E) None of these }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
MD6 - 3
For a collection of point charges, the dipole moment is
defined as
Consider the two charges, +2 q and -q, shown.
Which statement is true?
A) The dipole moment is
independent of the origin.
B) The dipole moment depends on
the position of the origin.
C) The dipole moment is zero.
D) The dipole moment is undefined.
3.22a

A small dipole (dipole moment $p=q d$) points in the z direction.
We have derived $V(\vec{r}) \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{q d z}{3}$
Which of the following is correct (and "coordinate free")?
A) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}}$
B) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\stackrel{\rightharpoonup}{p} \cdot \hat{r}}{r}$
C) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \vec{r}}{r^{2}}$
D) $V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \times \hat{r}}{r^{2}}$
E) None of these

$\begin{aligned} & 3.22 \\ & b \end{aligned}$	An ideal dipole (tiny dipole moment $\mathrm{p}=\mathrm{qd}$) points in the z direction. We have derived $\overrightarrow{\mathbf{E}}(\vec{r})=\frac{p}{4 \pi \varepsilon_{0} r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \vec{\theta})$ Sketch this E field... (What would change if the dipole separation d was not so tiny?)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
MD6 - 2
For a dipole at the origin pointing in the z-direction, we
have derived
$\quad \overrightarrow{\mathbf{E}}_{\text {dip }}(\overrightarrow{\mathrm{r}})=\frac{\mathrm{p}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta})$
For the dipole $\mathbf{p}=\mathrm{q}$ d shown, what does the
formula predict for the direction of $\mathrm{E}(\mathbf{r}=0)$?

A) Down	B) Up	C) some other direction
D) The formula doesn't apply.		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.22

${ }^{c}$ You have a physical dipole, $+q$ and $-q$ a finite distance d apart.
When can you use the expression:
$V(\bar{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}}$
A) This is an exact expression everywhere.
B) It's valid for large r
C) It's valid for small r
D)?
4.1 The sphere below (radius a) has uniform polarization \mathbf{P}_{0} (which points in the \mathbf{z} direction.)
What is the total dipole moment of this sphere?
A) zero
B) $P_{0} a^{3}$
C) $4 \pi a^{3} P_{0} / 3$
D) P_{0}
E) None of these/must be more
\qquad
\qquad complicated

[^0]The cube below (side a) has uniform (which points in the z direction.)
What is the total dipole moment of this cube?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.22

You have a physical dipole, +q and -q,
\qquad a finite distance d apart.
When can you use the expression \qquad
$V(r)=\frac{1}{4 \pi \varepsilon_{0}} \sum \frac{q_{i}}{\mathfrak{R}_{i}}$
A) This is an exact expression everywhere.
\qquad
B) It's valid for large r
C) It's valid for small r
D) ?

3.23

Griffiths argues that the force on a dipole in an E field is: $\overrightarrow{\mathbf{F}}=(\overrightarrow{\mathbf{p}} \bullet \vec{\nabla}) \overrightarrow{\mathbf{E}}$

If the dipole \mathbf{p} points in the z direction, what direction is the force?
A)Also in the z direction
B) perpendicular to z
C) it could point in any direction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.23

Griffiths argues that the force on a neutral dipole in an external E field is: \qquad

$$
\overrightarrow{\mathbf{F}}=(\overrightarrow{\mathbf{p}} \bullet \vec{\nabla}) \overrightarrow{\mathbf{E}}_{e x t}
$$

\qquad
If the dipole \mathbf{p} points in the z direction, what direction is the force? \qquad
\qquad
B) perpendicular to z
C) it could point in any direction \qquad
D) the force is zero because the dipole is neutral

3.24

Griffiths argues that the force on a dipole in an E field is: $\overrightarrow{\mathbf{F}}=(\overrightarrow{\mathbf{p}} \bullet \vec{\nabla}) \overrightarrow{\mathbf{E}}$
If the dipole \mathbf{p} points in the z direction, what can you say about E if I tell you the force is in the x direction?
A) E simply points in the x direction
B) Ez must depend on x
C) Ez must depend on z
D) Ex must depend on x
E) Ex must depend on z

E) None of these, or more than one of these!
(Note: for any which you did not select, how DO they behave at large r?)
3.26

Which charge distributions below produce a potential which looks like $\mathrm{C} / \mathrm{r}^{2}$ when you are far away?

$+2 q$	$+2 q$	$+q$	$-q$	$+2 q$
0	0	0	0	0
0	$-2 q$	-	0	-9
$-q$	$-2 q$	$-q$	q	$-q-q$
A)	B)	C)	D)	

E) None of these, or more than one of these!
(Note: for any which you did not select, how DO they behave at large r?)

3.27
What is the magnitude of the dipole
moment of this charge distribution?
A) qd
B) 2 qd
C) 3 qd
D) 4 qd
E) It's not determined
(To think about: How does $\mathrm{V}(\mathrm{r})$ behave as r
gets large?)

\qquad

3.28	In which situation is the dipole term the leading non-zero contribution to the potential?
A) A and C	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
E) Some other combo
3.29 In terms of the multipole expansion $V(r)=V($ mono $)+V($ dip $)+V($ quad $)+\ldots$ the following charge distribution has the form:
$O=+q$
$O=-q$
\qquad
\qquad
\qquad
\qquad
A) $\mathrm{V}(\mathrm{r})=\mathrm{V}($ mono $)+\mathrm{V}(\mathrm{dip})+$ higher order terms
B) $\mathrm{V}(\mathrm{r})=\mathrm{V}(\mathrm{dip})+$ higher order terms
\qquad
C) $V(r)=V(d i p)$
D) $V(r)=$ only higher order terms than dipole
E) No higher terms, $\mathrm{V}(\mathrm{r})=0$ for this one.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: 4.1 polarization \mathbf{P}_{0}
 A) zero
 B) $a^{3} P_{0}$
 C) P_{0}
 D) P_{0} / a^{3}
 E) $2 P_{0} a^{2}$

