
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

Class Activities: current (1)

isual Explanation
current Density and the Mississippi
oulder Cre by thinking about the "flow of the Mississippi" compared to "flow of bigger) but what about "water flowing at me through this circle I am making with my fingers". Then perhaps Boulder Creek even wins - so there's some OTHER quantity to characterize flow, which motivates our definition of "current density" s current/area. (Then rotate the circle to show them that it's really perpendicular area needed to DEFINE this current density)

Discussion
Also, nice discussion built on student question, would current in a wire be only on he edges (since we've learned excess charge goes there). Lots of things to talk about - wires needn't have excess charge, visualize the "negative electron fluid" displacing in an E field, and so on..
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Discussion
	Also
Class Activities: Current (2)	length, but dit is tuy a point
	thetic
	Stead current
	an ahan moment. Fora suriace arreet heyll ask how do you measure
	Seste
	putit pependidulurat to the unenent Talk
	is Inear charge density times velocity. That makes la

\qquad

A student argues that the current through a wire flows throughout its volume, you: \qquad
A) Agree, resistance is inversely proportional to cross sectional area, not circumference
B) Disagree, it must flow only on the surface of the wire because the negative charges repel each other
C) Agree for different reasons
D) Disagree for different reasons
5.5 Positive ions flow right through a liquid, negative ions flow left.
The spatial density and speed of both ions types are identical.
Is there a net current through the liquid?
A) Yes, to the right
B) Yes, to the left
C) No
D) Not enough information given
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5.7

Current I flows down a wire (length L) with a square cross section (side a) \qquad If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density J ?
A) $J=I / a^{2}$
B) $J=I / a$
C) $K=J /(4 a)$
D) $J=I /\left(a^{2} L\right)$
E) None of the above

Current I flows down a wire (length L)
\qquad
5.6 with a square cross section (side a) If it is uniformly distributed over the outer surfaces only, what is the
\qquad magnitude of the surface current density K ?
A) $K=I / a^{2}$
B) $K=I / a$
C) $K=I /(4 a)$
D) $K=I /\left(a^{2} L\right)$
E) None of the above

\qquad
\qquad
\qquad
\qquad

A "ribbon" (width a) of surface current flows (with surface current density K)
Right next to it is a second identical ribbon of current.
Viewed collectively, what is the new total surface current density?
A) K
B) 2 K

C) $\mathrm{K} / 2$
D) Something else \qquad

A "ribbon" (width a) with uniform surface current density K passes through a uniform \qquad magnetic field $\mathbf{B}_{\text {ext }}$. Only the length b along the ribbon is in the field. What is the magnitude of the force on the ribbon?
A) KB
B) aKB
C) abKB
D) $b K B / a$

E) $K B /(a b)$
5.10 Which of the following is a statement of charge conservation?
A) $\frac{\partial \rho}{\partial t}=-\int \overrightarrow{\mathbf{J}} \cdot d \overrightarrow{\mathbf{l}}$
B) $\frac{\partial \rho}{\partial t}=-\iint \overrightarrow{\mathbf{J}} \cdot d \overrightarrow{\mathbf{A}}$
C) $\frac{\partial \rho}{\partial t}=-\iiint(\nabla \cdot \overrightarrow{\mathbf{J}}) d \tau$
D) $\frac{\partial \rho}{\partial t}=-\nabla \cdot \overrightarrow{\mathbf{J}}$
E) Not sure/can't remember

Until now, you have been told that magnetic fields loop around a current carrying wire. But how do you know that there are no other components? Show (mathematically) which of the below B-field
\qquad components are/not possible.

\qquad
\qquad
\qquad
\qquad
\qquad

Is the total net charge in the universe conserved? How about the total mass?
A) Charge is conserved; total mass is conserved B) Charge is conserved; total mass is not conserved
C) Charge is not conserved; total mass is conserved
D) Charge is not conserved; total mass is not conserved
E) Dude! How should I know?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
5.11 To find the magnetic field B at P due to a current-carrying wire we use the BiotSavart law,

$$
\bar{B}(\bar{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathcal{R}}}{\mathfrak{Z}^{2}}
$$

In the figure, with "dl" shown, what is $\vec{\Re}$?
.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.11 To find the magnetic field B at P due to a current-carrying wire we use the Biot-
Savart law,

$$
\bar{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathcal{R}}}{\mathfrak{K}^{2}}
$$

In the figure, with "dl" shown, which purple vector best represents \mathfrak{R} ?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5.12 To find the magnetic field B at P due to a current-carrying wire we use the Biot-Savart
\qquad law,

$$
\bar{B}(\bar{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathfrak{R}}}{\mathfrak{K}^{2}}
$$

What is the direction of the infinitesimal contribution $\mathrm{dB}(\mathrm{P})$ created by current in dl ?
A) Up the page P
B) Directly away from dl (in the plane of the page)

Origin
C) Into the page
D) Out of the page
E) Some other direction

\qquad
\qquad
\qquad
5.13m To find the magnetic field B due to a current-carrying wire, below, we use the Biot-Savart law, $\vec{B}(\bar{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{I} d l \times \hat{\mathrm{R}}}{\mathrm{R}^{2}}$
What is the value of $\frac{\vec{I} d l \times \hat{R}}{\mathrm{R}^{2}}$?
a) $\frac{\operatorname{Iydx} \mathrm{U} \cup}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}$ b)

\qquad
\qquad
\qquad
\qquad
\qquad
c) $\frac{-I x^{\prime} d x^{\prime} y}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}} \mathrm{~d}$
$\frac{-I y d x^{\prime} U}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}$
e) $\frac{-I d x^{\prime}\left(y y^{\prime}-x^{\prime}\right)}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}$
\qquad
\qquad
A) $\frac{\mu_{0}}{\pi s} I$
B) $\frac{\mu_{0}}{2 \pi s} I$
C) $\frac{\mu_{0}}{4 \pi s} I$
D) $\frac{\mu_{0}}{8 \pi s} I$
E) None of these
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
5.16 What do you expect for direction of B(P)?
    How about direction of dB(P) generated JUST
    by the seament of current dl in red?
```



```
A) \(\mathbf{B}(p)\) in plane of page, ditto for \(\mathrm{dB}(P\), by red)
B) \(B(p)\) into page, \(d B(P\), by red) into page
C) \(\mathbf{B}(\mathrm{p})\) into page, \(d \mathbf{B}(P\), by red) out of page
D) \(\mathbf{B}(p)\) complicated - has mult component (not \(\perp\) or || to page), ditto for \(\mathrm{dB}(\mathrm{P}\), by red)
E) Something else!
```

$工$

I have two very long, parallel wires each carrying a \qquad current I_{1} and I_{2}, respectively. In which direction is the force on the wire with the current I_{2} ? \qquad
\qquad
A) Up
B) Down
C) Right
D) Left
E) Into or out of the page
(How would your answer change if you would reverse the direction of the currents?)

To find the magnetic field B due to a current-carrying \qquad loop, we use the Biot-Savart law $\vec{d} \times$

$$
\begin{aligned}
& \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \vec{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}
\end{aligned}
$$

\qquad What is the magnitude of $\frac{d \vec{l} \times \hat{\mathcal{K}}}{\mathfrak{Z}^{2}}$? \qquad
A) $\frac{d l \sin \phi}{z^{2}}$
B) $\frac{d l}{z^{2}}$
C) $\frac{d l \sin \phi}{\left(z^{2}+a^{2}\right)}$
D) $\frac{d l}{\left(z^{2}+a^{2}\right)}$
E) Something quite different!

(Which colored arrow is \mathfrak{R} ? r? r'?)

5.15 To find the magnetic field B due to a current-carrying loop, we use the Biot-

 Savart law, $\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \bar{l} \times \nprec}{\chi^{2}}$What is the dB_{z} (the contribution to the vertical component of \mathbf{B} from this dl segment?)
A) $\frac{d l}{z^{2}+a^{2}} \frac{a}{\sqrt{z^{2}+a^{2}}}$
B) $\frac{d l}{z^{2}+a^{2}}$
C) $\frac{d l}{z^{2}+a^{2}} \frac{z}{\sqrt{z^{2}+a^{2}}}$
D) $\frac{d l \cos \phi}{z^{2}+a^{2}}$
E) Something quite different!

An electron is moving in a straight line with constant speed v. What approach would you choose to calculate the B -field generated by this electron?

A) Biot-Savart
B) Ampere's law
C) Either of the above.
D) Neither of the above.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad Tutorials
udents working in smal groups practice using A \qquad without really knowing what they mean. Also, they tend not to realize that the really valuable place to slowdown the pace and get students thinking about the \qquad

Class Activities: Stokes' Thm, Div, Curl, Ampere (2)	Whiteboards
	Boundary conditions on B One persistent difificuly that students have is an inability to recreate the
	mathematical steps to determine the boundary conditions on the parallel and
	course, Istrongly recommend having a whiteboard or worksheet activity where
	Whiteboard Griffiths "B" Triangle
	Had them write out the triangle, took ~ 5 minutes. (There's still one "leg" they
	Computer Visualizations
	B fields, circulation, flux Java applets allowing you to see 3D magnetic fields, and do surface and line integrals to determine ciruculation and flux.
	Computer Animation Cycloid I Googled "cycloid" and pull up Mathematica's webpage, it has a very nice animation of the cycloid.
	Context rich problems http://groups.physics.umn.edu/physed/Research/CRP/on-lineArchive/crmff.html
	Tutorial Magnetic Field Continuity across a Boundary Oregon State University Students working in small groups use Maxwell's equations to determine the continuity of the magnetic field across a charged surface

Amperian loop analysis

Consider the infinite uniform current sheet \mathbf{K} flowing in the x direction.
I. Which variables (x, y, z) can B depend on?
II. Which vector components ($\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}$) can be non-zero?

Give your reasoning for each variable and component.
III. What loop would you use to find B? Why?
A large cube of volume V is made up of many smaller cubes. Each smaller cube (labeled with index i) has volume v_{i}, so that

$$
\mathrm{V}=\sum_{i} \mathrm{v}_{\mathrm{i}}
$$

The flux of the vector field \mathbf{F} over small cube i is $f \stackrel{v}{\mathbf{V}} \cdot \mathrm{da}$
If we add up all the fluxes over all the little cubes will this equal the flux over the big cube ?

$$
\sum_{i}\left(f_{\mathrm{i}}^{\mathrm{V}} \cdot \mathrm{da}\right) \stackrel{? ?}{=} \int_{\mathrm{v}}^{\mathrm{V}} \mathrm{~F} \cdot d \mathrm{~V}^{\mathrm{V}}
$$

A) Yes
B) No
C) Depends on the vector field F
\qquad
\qquad
\qquad
\qquad

Stoke's Theorem says that for a surface S bounded by a perimeter L, any vector field \mathbf{B} obeys

\qquad

\qquad
\qquad
Does Stoke's Theorem apply for any surface S bounded by a perimeter L , even one such as this balloon-shaped surface S : \qquad
A) Yes
B) No
C) Sometimes

\qquad
A) iii $>$ iv $>$ ii $>$ i
B) iii $>$ i $>$ ii $>$ iv
C) i $>$ ii $>$ iii $>$ iv
D) Something else!!
E) Not enough info given!!
${ }_{a}^{5.17}$ If the arrows represent a B field (note that $|B|$ is the same everywhere), is there a nonzero \mathbf{J} (perpendicular to \qquad the page) in the dashed region?

A. Yes
B. No
C. Need more information to decide

```
5.17
b If the arrows represent a \(B\) field (note that \(|\mathrm{B}|\) is the same everywhere), is there a nonzero \(\mathbf{J}\) (perpendicular to the page) in the dashed region?
```


\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
AMPERE'S LAW
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5.22

What is $\oint \overrightarrow{\mathbf{B}} \cdot \mathbf{d} \overrightarrow{\mathbf{l}}$ around this purple (dashed) Amperian loop? \qquad

A) $\mu_{0}\left(\left|I_{2}\right|+\left|l_{1}\right|\right)$
B) $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right|\right)$
C) $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \sin \theta\right)$
D) $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right|\right.$ $\sin \theta)$

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
boxes are zero in the static case: $\mathrm{dB} / \mathrm{dt}=0, \mathrm{dE} / \mathrm{dt}=0$
5.20
A solenoid has a total of N windings over a distance
of L meters. We "idealize" by treating this as a
surface current running around the surface.
What is K ?

A) I	B) NI	C) I / L	D) I N / L
E) Something else...			

\qquad

MD11-3

An infinite solenoid with surface current density K is oriented along the z -axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown.

We can safely assume that $\mathrm{B}(\mathrm{s} \rightarrow \infty)=0$ What does this tell you about the B-field outside the solenoid?
A) $|\mathrm{B}|$ is a non-zero constant outside

B) $|\mathrm{B}|$ is zero outside
C) $|B|$ is not constant outside
D) We still don't know anything about $|\mathrm{B}|$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.21	Two long coaxial solenoids each carry
d	current I but in opposite directions.
	The inner solenoid (radius a) has n1 turns
per unit length, and the outer one (radius	
b) has n2.	
Find B (i) inside the solenoid, (ii) between	
them, and (iii) outside both.	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Loop 1 Loop 2
 ๑๑๑๑๑๑๑๑○๑๑๑๑๑๑๑๑
 Loop 3
 \section*{}

In the case of the infinite solenoid we used loop 1 to argue that the \mathbf{B}-field outside is zero. Then we used loop 2 to find the Bfield inside. What would loop 3 show?
a) The \mathbf{B}-field inside is zero
b) It does not tell us anything about the Bfield
c) Something else

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
5.19 The vector potential in a certain region is given by

$$
\overrightarrow{\mathrm{A}}(\mathrm{x}, \mathrm{y})=\mathrm{Cy} \hat{\mathrm{x}}
$$

(C is a positive constant) Consider the imaginary loop shown. What can you say about the magnetic field in this region?
A. B is zero
B. B is non-zero, parallel to z-axis
C. B is non-zero, parallel to y-axis
D. B is non-zero, parallel to x-axis

$\nabla \times \overrightarrow{\mathbf{E}}=0 \rightarrow \overrightarrow{\mathbf{E}}=-\nabla \mathrm{V}$
Can add a constant ' c ' to V without changing E ("Gauge freedom"): $\nabla c=0, \forall c=$ const.
$\vec{\nabla} \cdot \overrightarrow{\mathbf{B}}=0 \rightarrow \overrightarrow{\mathbf{B}}=\vec{\nabla} \times \overrightarrow{\mathbf{A}}$
Can add any vector function 'a' with $\nabla \mathbf{x a}=0$ to \qquad
A without changing \mathbf{B} ("Gauge freedom")
$\nabla \times(\mathbf{A}+\mathbf{a})=\nabla \times \mathbf{A}+\underset{0}{\nabla \times \mathbf{a}}=\nabla \times \mathrm{A}=\mathrm{B}$

Do you want me to do more example showing how to find A given J?
A)Yes
B)No \qquad
5.24 If the arrows represent the vector potential \mathbf{A} (note that $|A|$ is the same everywhere), is there a nonzero \mathbf{B} in
\qquad the dashed region?

A. Yes
B. No
C. Need more information to decide

Compare the magnetostatic triangle (p .
240) with the electrostatic triangle (pg.
87). How is the potential similar/different
\qquad to the vector potential?

$\nabla^{255} \quad \overrightarrow{\mathbf{A}}=-\mu_{0} \overrightarrow{\mathbf{J}}$
In Cartesian coordinates, this means:
$\nabla^{2} \mathrm{~A}_{x}=-\mu_{0} \mathrm{~J}_{x}$, etc.
Does it also mean, in spherical coordinates, that $\nabla^{2} \mathrm{~A}_{r}=-\mu_{0} \mathrm{~J}_{r}$?
A) Yes
B) No
${ }^{5.25} \overrightarrow{\mathbf{A}}(\vec{r})=\frac{\mu_{0}}{4 \pi} \iiint \frac{\overrightarrow{\mathbf{J}}\left(r^{\prime}\right)}{\Re} d \tau^{\prime}$
Can you calculate that integral using spherical coordinates?
A) Yes, no problem
B) Yes, r' can be in spherical, but J still needs to be in Cartesian components
C) No.

```
MD12-3
The vector potential A due to a long straight wire with current I along the z-axis is in the direction parallel to:
A) \(\hat{z}\)
B) \(\hat{\varphi}\) (azimuthal)
C) \(\hat{\mathrm{s}}\) (radial)
```


MD12-4a,b

A circular wire carries current I in the xy plane. What can you say about the vector potential A at the points shown?

At point a, the vector potential A is: A) Zero

B) Parallel to x-axis
D) Parallel to z-axis
$\xrightarrow{\mathbf{y}}$
At point b, the vector potential A is
A) Zero
B) Parallel to x-axis
C) Parallel to y-axis
D) Parallel to z-axis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Two magnetic dipoles $\mathbf{m} 1$ and $\mathbf{m} 2$ are oriented in three different ways.

\qquad
\qquad
\qquad
\qquad
5.26

What is

A) The current density \mathbf{J}
B) The magnetic field \mathbf{B}
C) The magnetic flux Φ_{B}
D) It's none of the above, but is something simple and concrete
E) It has no particular physical interpretation at all
5.27 Suppose A is azimuthal, given by $\overrightarrow{\mathbf{A}}=\frac{c}{s} \hat{\varphi}$
\qquad

What can you say about curl(A)?
A) $\operatorname{curl}(\mathbf{A})=0$ everywhere
B) $\operatorname{curl}(\mathbf{A})=0$ everywhere except at $\mathrm{s}=0$.
C) $\operatorname{curl}(\mathbf{A})$ is nonzero everywhere \qquad
D) ???

Writing assignment
On paper (don't forget your name!) in your own words (by yourself): \qquad
What is the idea behind the magnetic \qquad vector potential? \qquad What does it accomplish, why might we care about it? \qquad In what ways is it like (or NOT like!) the electric potential? \qquad
\qquad
${ }^{5.28}$ Choose all of the following statements that are implied by $\oint \vec{B} \cdot d \vec{a}=0$ (for any closed surface you like)
(I) $\vec{\nabla} \cdot \vec{B}=0$
(II) $B_{\text {above }}^{\prime \prime}=B_{\text {below }}^{\prime \prime}$
(III) $B_{\text {above }}^{\perp}=B_{\text {below }}^{\perp}$
A) (II) only
B) (III) only
C) (I) and (II) only
D) (I) and (III) only
E) All of the above
5.28
b In general, which of the following are continuous as you move past a boundary?

A) $\mathbf{A} \quad$ B) Not all of \mathbf{A}, just $A_{\text {perp }}$
C) Not all of \mathbf{A}, just $\mathrm{A}_{/ /}$
D) Nothing is guaranteed to be continuous regarding \mathbf{A}

This is the formula for an ideal magnetic dipole:
$\overrightarrow{\mathbf{B}}=\frac{c}{r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta})$
What is different in a sketch of a real (physical) magnetic dipole (like, a small current loop)? \qquad

5.29 | The formula from Grifiths for a magnetic |
| :--- |
| dipole at the origin is: |
| $\qquad \overrightarrow{\mathbf{A}}(\overrightarrow{\mathrm{r}})=\frac{\mu_{0}}{4 \pi} \frac{\hat{\mathrm{~m}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}}$ |

Is this the exact vector potential for a flat ring of current with
$\mathrm{m}=\mathrm{Ia}$ or is it approximate?

A) It's exact
B) It's exact if $|r|>$ radius of the ring
C) It's approximate, valid for large r
D) tt 's approximate, valid for small r
\qquad
\qquad
\qquad
Is this the exact vector potential for a flat ring of current with
\qquad
\qquad
\qquad
D)It's approximate, valid for small r

5.30The leading term in the vector potential multipole expansion involves $\oint d \overrightarrow{\mathbf{l}}^{\prime}$ What is the magnitude of this integral? A) R B) $2 \pi R$ C) 0 D) Something entirely different/it depends!

\qquad
(See Chapter 6 concept tests for force and torque on dipole questions.) \qquad
\qquad
\qquad
\qquad

