* TUTORIAL 10: VISUALIZING VECTOR POTENTIAL *

Part 1 - Sketching Vector Potential

i. Notice that the equations defining \mathbf{A} are mathematically analogous to Maxwell's equations

$$
\begin{array}{llll}
\text { for } \mathbf{B}: & \nabla \cdot \overrightarrow{\mathbf{B}}=0 & \Leftrightarrow \nabla \cdot \overrightarrow{\mathbf{A}}=0 & \text { (Coulomb gauge) } \\
& \nabla \times \overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{J}} & \Leftrightarrow \nabla \times \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}
\end{array}
$$

Sketch B in Fig 1 (note this is a "cylindrical" volume with uniform J). Then, using the mathematical similarities above, sketch \mathbf{A} in Fig 2:

Side view:

$$
\vec{J}(s \leq a, \phi, z)=J_{o} \hat{z}
$$

Figure 1: Given \mathbf{J}, sketch the \mathbf{B} field.

Side view:

$$
\vec{B}(s \leq a, \phi, z)=B_{o} \hat{z}
$$

Figure 2: Given B, sketch the A field.

ii. One way to check your previous answer (conceptually) is using an Ampere's Law analogy. Ampere's Law tells you that the \mathbf{J}-flux (or $\mathrm{I}_{\text {encl }}$) is equal to $\oint \vec{B} \bullet d \vec{l}$.

What is a similar relationship between the vector potential and magnetic field?

Try using this "Ampere's Law analogy" to check your sketch of A.

Part 2 - Calculating Vector Potential

In a common homework question, you are asked to calculate the magnetic field produced by a uniform
 surface current: $K(z=0)=K_{o} \hat{x}$. The answer is:
$\vec{B}(z>0)=\frac{-\mu_{o} K_{o}}{2} \hat{y}, \quad \vec{B}(z<0)=\frac{+\mu_{o} K_{o}}{2} \hat{y}$
Sketch your best guess of what \mathbf{A} looks like for the uniform surface current. Which components (x, y, or z) does \mathbf{A} have (it might help to look at relationship between \mathbf{A}, \mathbf{B}, and \mathbf{J} in the two examples in Part 1)? Which variables (x, y, or z) does \mathbf{A} depend on?

i. Using your assumption for which components \mathbf{A} has, and which variables \mathbf{A} depends on, calculate (or guess) what \mathbf{A} is.

Check your answer by calculating the \mathbf{B} field from your vector potential \mathbf{A}.

