* Tutorial 1: Points, Lines and Rings, Oh My! * Coulomb's Law and "scriptr"

Part 1 - Constructing the Potential

Recall from freshman physics that the potential at an arbitrary point $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from a point charge, q , at the origin is given by

$$
V=\frac{k q}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

i. Using this, write an exact expression for the potential at $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from two identical point charges located at $(0,0,0)$ and $\left(0, \mathrm{y}_{2}, 0\right)$.

ii. Now write an exact expression for the potential at $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from a string of N identical point charges along the y-axis.

iii. Write an expression for the potential at point $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ due to an infinite line of charge on the y-axis with uniform charge density λ.

Part 2 - Script-r

There is a charge +Q at point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$.
We're concerned with the field at point $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
i. Draw on the graph: $\vec{r}, \vec{r}^{\prime}$, and $\overrightarrow{\boldsymbol{r}}$ (where $\overrightarrow{\boldsymbol{r}}$ is Griffiths' "script r").

ii. Express \vec{r} in terms of \vec{r} and \vec{r}^{\prime}.
iii. Now express the Cartesian $\left(\tau_{\mathrm{x}}, \tau_{\mathrm{y}}\right.$, and τ_{z}) components of $\vec{\tau}$ in terms of the Cartesian components of \vec{r} and \vec{r}^{\prime}. Keep your answers as simple as possible.
iv. Now go back to the question on the other side (Part 1, q iii) and rewrite your integral using Griffith's "script-r" notation. Which quantity in your equation does "script R " represent? Which quantity takes the place of the q from part 1-i?

