REVIEW of 3310 (E&M I)

Do you have an Iclicker to use for this term?

- A) Yes, I do!
- B) Not yet
- Press & HOLD power (blue light *flashes*)
- Key in \underline{AC} (or whatever OUR room code says, all term)
- Brief green Status flash confirms!
 (Blue light steady)

(You can do this only while I'm collecting votes)

Have you looked at the 3320 course web page yet?

- A) Yes
- B) Not yet

Can you make it to evening exams Thurs Oct 2, 7:30-9:30 PM and Thurs Nov 13, 7:30-9:30 PM

- A) Yes
- B) No possibility

3 equal charges, q, are arranged in an equilateral triangle pattern, as shown.

What is the E field at the center?

- A) Zero
- B) Non-zero
- C) Really need trig and a calculator to decide for sure

To find **E** at P from a <u>negatively</u> charged sphere (radius R, volume charge density ρ),

$$\vec{\mathbf{E}} = \frac{1}{4\pi\varepsilon_0} \iiint -\frac{\hat{\tau}}{\tau^2} \rho \, d\tau'$$

What is **7** (given the small volume element shown)?

R

P=(X,Y,Z)

- D) None of these
- E) Answer is ambiguous

To find **E** at P from a <u>negatively</u> charged sphere (radius R, volume charge density ρ),

$$\vec{\mathbf{E}} = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\hat{\tau}}{\tau^2} \rho \, d\tau'$$

To find E at P from a thin ring (radius R, charge density λ), which is the correct formula for the x-component of $\vec{\Re}$?

- A) x-x'
- B) (x-x')/R
- C) $(x-R \cos \phi')$ (cylindrical coordinates)
- D) $(x x')/Sqrt[(x-x')^2+(y-y')^2+(z-z')^2]$
- E) More than one of the above is correct!

A positive point charge +q is placed outside a closed (empty) cylindrical surface as shown.

The closed surface consists of the flat end caps (labeled A and B) and the curved side surface (C). What is the sign of the (outward) electric flux through surface C?

- (A) positive (B) negative (C) zero
- (D) To be sure, this requires calculating!

Can you think of more than one argument?

Consider the 3D vector field

$$\vec{V}(\vec{r}) = c \left(\frac{\hat{r}}{r^2}\right)$$

in spherical coordinates, where c = constant.

The divergence of this vector field is:

- A) Zero everywhere except at the origin
- B) Zero everywhere including the origin
- C) Non-zero everywhere, including the origin.
- D) Non-zero everywhere, except at origin (zero at origin)
- E) Not quite sure how to get this (without computing from the front flyleaf of Griffiths!)

Given a thin spherical *shell* with uniform *surface* charge density σ (and no other charges anywhere else) what can you say about the potential V inside this sphere? (Assume $V(\infty)=0$)

- A) V=0 everywhere inside
- B) V = non-zero constant everywhere inside
- C) V must vary with position, but 0 at the center.
- D) None of these/something else/not sure.

Choose all of the following statements that are implied by $\iint \vec{B} \cdot d\vec{a} = 0$ (for any/all closed surface you like)

(I)
$$\vec{\nabla} \cdot \vec{B} = 0$$

(II)
$$B_{above}^{\prime\prime} = B_{below}^{\prime\prime}$$

(III)
$$B_{above}^{\perp} = B_{below}^{\perp}$$

- A) (II) only
- B) (III) only
- C) (I) and (II) only
- D) (I) and (III) only
- E) All of the above

A point charge +q is near a neutral copper sphere with a hollow interior space. In equilibrium, the surface charge density σ on the interior wall of the hollow conductor is..

- A) Zero everywhere
- B) Non-zero, but with zero net total charge on interior surface
- C) Non-zero, with nonzero net total charge on interior surface.

A point charge +q is near a neutral copper sphere with a hollow interior space. In equilibrium, the surface charge density σ on the interior wall of the hollow conductor is..

- A) Zero everywhere
- B) Non-zero, but with zero net total charge on interior surface
- C) Non-zero, with non-zero net total charge on interior surface.

A proton (q=+e) is released from rest in a uniform **E** and uniform **B** (as shown).

E points up, **B** points into the page.

Which of the paths will the proton initially follow?

(To think about: what happens after longer times?)

I have two very long, parallel wires each carrying a current I_1 and I_2 , respectively. In which direction is the force on the wire with the current I_2 ?

- A) Up
- B) Down
- C) Right
- D) Left
- E) Into or out of the page

(How would your answer change if you would reverse the direction of the currents?)

Static fields satisfy the partial diff. eqs:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad \vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{E} = 0 \qquad \vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

In the presence of macroscopic matter:

- A) The equations are unchanged.
- B) You must replace E with D and B with H, because of the response of the matter.
- C) You must replace ρ and J with free charge density and free currents, because bound charges and currents don't contribute
- D) None of the above/something else!!

_{5.7} Current I flows down a wire (length L) with a square cross section (side a) If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density?

A)
$$J = I/a^2$$
 B) $J = I/a$

B)
$$J = I/a$$

C)
$$J = I/(a^2L)$$
 D) $J = I/a^3$

$$D) J = I/a^3$$

E) None of the above!

Current I flows down a wire (length L) with a square cross section (side a) If it is uniformly distributed over the outer surfaces only, what is the magnitude of the surface current density K?

- A) $K = I/a^2$ B) K = I/a
- C) K = I/(4a) D) $K = I/(a^2L)$
- E) None of the above

To think about: does it seem physically correct to you that charges WOULD distribute evenly over the outer surface?

If the arrows represent a B field (note that |B| is the same everywhere), is there a nonzero J (perpendicular to the page) in the dashed region?

- A. Yes
- B. No
- C. Need more information to decide

If the arrows represent a B field (note that |B| is the same everywhere), is there a nonzero J (perpendicular to the page) in the dashed region?

- A. Yes
- B. No
- C. Need more information to decide

Can we use Ampere's Law to simply compute the B-field at the center of a circular current-carrying loop of wire?

- A) Yes
- B) No
- C) Not sure/ maybe if you are really good at math/???

