A neutral, infinite current sheet, **K**, flows in the *x-y* plane, in the +*y* direction. To the right of the *x-y* plane, according to what you know from Phys 3310, the **E** and **B** field directions are:

r1

A) Yes, and I can defend my answer

r7

- B) Yes, but I cannot explain why I believe this
- C) No, and I can defend my answer
- D) No, but I cannot explain why I believe this
- E) It depends on the reference frame of the observer!

You are FAR from a small oscillating dipole, $I(t) = -q_0 \omega \sin \omega t$ and you want to compute the vector potential: \rightarrow $\vec{A}(\vec{r},t) = \frac{\mu_0}{4}$ 4π $\frac{\vec{J}(\vec{r}',t_R)}{|\vec{r}-\vec{r}'|}$ | $\iiint \frac{\vec{J}(\vec{r}',t_R)}{|\vec{r}-\vec{r}'|} d^3 \vec{r}'$, with $t_R = t - \frac{|\vec{r}-\vec{r}'|}{c}$ *c* What is the leading order approximate expression for **A**(**r**, t) ? A) $\frac{\mu_0}{4}$ 4π $-q_0 \omega \sin \omega t$ *r z*ˆ *B*) $\frac{\mu_0}{4}$ 4π $-q_0 \omega \sin \omega (t - r/c)$ *r z*ˆ $C)\frac{\mu_0}{4}$ 4π $d \frac{-q_0 \omega \sin \omega t}{ }$ *r z*ˆ *D*) $\frac{\mu_0}{4}$ 4π $d \frac{-q_0 \omega \sin \omega (t - r/c)}{r}$ *r z*ˆ E) Something else?! **r** $\begin{matrix} 1 \\ 0 \\ 1 \end{matrix}$

What is
$$
\hat{z}
$$
, in spherical coordinates?
\nA) $\cos\theta \hat{r}$
\nB) $\sin\theta \hat{r} + \cos\theta \hat{\theta}$
\nC) $\cos\theta \hat{r} + \sin\theta \hat{\theta}$
\nD) $\cos\theta \hat{r} - \sin\theta \hat{\theta}$
\nE) Something else?
\nThus, $\vec{A}(r,t) = \frac{\mu_0}{4\pi} d \frac{-q_0 \omega \sin\omega(t - r/c)}{r} \left(\cos\theta \hat{r} - \sin\theta \hat{\theta}\right)$
\n $\vec{B}(r,t) = \nabla \times \vec{A}(r,t) = \frac{-\mu_0 p_0 \omega^2}{4\pi} \sin\theta \frac{\cos\omega(t - r/c)}{rc} \hat{\phi}$

r13 $B(r,t) \hat{\varphi} = \frac{-\mu_0 p_0 \omega^2}{4}$ 4π $\sin \theta \frac{\cos \omega (t - r/c)}{}$ *rc* $\hat{\varphi}$ For an oscillating dipole, $p=p_0 \cos(\omega t)$, we worked out last class (assuming $r \gg \lambda \gg d$) that: To think about (be prepared to discuss): In what ways is it like (and not like) our familiar free-space "traveling plane wave"? Which of the following describes the E field? A) $\overline{}$ $\vec{E} = cB \hat{\phi}$ B) \vec{E} = cB $\hat{\theta}$ θ C) \rightarrow $\hat{E} = cB \hat{r}$ D) \rightarrow $E = cB \hat{z}$ E) None of these/something else?

r14 Total power radiated by a small electric dipole is $=\frac{\mu_0 p_0^2 \omega^4}{2}$ $6\pi c$ $\cos^2 \omega(t - r/c)$ What is the time averaged power? What is the time averaged intensity at distance "r"? $P = \int \frac{\mu_0 p_0^2 \omega^4}{(16 \pi^2)^2}$ $\iint \frac{\mu_0 P_0 \omega}{(16\pi^2) cr^2} \sin^2 \theta \cos^2 \omega (t - r/c) da$

¹⁵ The time averaged Poynting vector (far from a small electric dipole) is approximately:

$$
\left\langle \vec{S} \right\rangle = \frac{\mu_0 p_0^2 \omega^4}{32\pi c r^2} \sin^2 \theta \ \hat{r}
$$

Describe this energy flow in words, pictures, or graph.

$$
R_{rad} \equiv \frac{P_{ave}}{I_{rms}^2}
$$

Recall, we found $I = -q_0 \omega \cos(\omega t)$.
So what is I_{rms} ?
A) $q_0 \omega$ B) $q_0 \omega/2$ C) $q_0 \omega/\sqrt{2}$ D) $\sqrt{2}q_0 \omega$
E) None of these/sometimes else?

$$
R_{rad} = \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{2\pi}{3} (d/\lambda)^2
$$

r17 We're interested in power radiated by a wiggling charge. 1) What physics variables might this power possibly depend on? (Come up with a complete, but not OVERcomplete list) 2) If your list of variables was v_1 , v_2 , etc..., we're saying $P = V_1^a V_2^b ...$ Look at the SI UNITS of all quantities involved. I claim you should be able to uniquely figure out those powers (a,b, …) ! Try it.

Hint: My list of variables is q, a, c, and μ_0

The TOTAL power of an accelerating (non-relativistic) charge is called **Larmor's formula**.

It depends on c, μ_0 a (acceleration) and q (charge).

So I presume that means $P = c^A \mu_0^B a^C q^D$ (!? It's at least a plausible guess…)

Figure out the *constants* A-D in that formula, without using any physics beyond units! (This is *dimensional analysis)*

Note: $[P]$ = Watts = kg m²/s³, $[\mu_0] = N/A^2 = kq \ m/C^2$

r18

