Griffiths Chapter 8 – Conservation laws

8.1

The definition of work is the starting point of deriving the work energy theorem:

$$
dW = \mathbf{F}_{\text{net}} \cdot d\mathbf{l}
$$

What is the second necessary relation in deriving the theorem?

A.
$$
\mathbf{F}_{\text{net}} = \sum_{i} \mathbf{F}_{i}
$$
 B. $\mathbf{F}_{\text{net}} = \frac{d\mathbf{p}}{dt}$ C. $W = \int_{path} \mathbf{F}_{\text{net}} \cdot d\mathbf{l}$

8.1a

The work energy theorem states:

$$
W = \int_{i}^{f} \mathbf{F}_{\text{net}} \cdot d\mathbf{l} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2
$$

This theorem is valid

- A. only for conservative forces.
- B. only for non-conservative forces.
- C. only for forces which are constant in time
- D. only for forces which can be expressed as potential energies
- E. for all forces.

If energy density u_{EM} has units J/m³, what units does the energy "flow" or flux density **S** have?

A. $J/(s \, m^3)$ $B.$ W/m³ C. $J/(s m^5)$ D. W/m2 E. None of the above $(W = Watt)$

Local conservation of electric charge is expressed mathematically by: $\frac{1}{2} = -V \cdot J$ where J is "current density" $\partial \rho$ $\frac{\partial P}{\partial t} = -\nabla \cdot$ $\overline{}$ **J** In general, local conservation of "blah" looks like ∂ (blah) $\frac{\partial \tan f}{\partial t} = -\nabla \cdot (\text{flow of blank})$

Local conservation of electric charge is expressed mathematically by: $\frac{1}{2} = -V \cdot J$ where J is "current density" $\partial \rho$ $\frac{\partial P}{\partial t} = -\nabla \cdot$ \overline{a} **J** We are trying to come up with a "conservation of energy" expression: ∂ (energy density) $\frac{\partial f}{\partial t}$ = $-\nabla \cdot$ (*something*) What sort of beast is this "something" ? - Is it a scalar, vector, something else? - How would you interpret it, what words would you use to try to describe it? - What are its UNITS? A) J B) J/s C) J/m² D) J/(s m²) E) Other! **J** = ρ**v** has units of (charge/sec)/m2

Local conservation of electric charged is expressed mathematically by: $\mathbf{F} = \nabla \cdot \mathbf{J}$ where J = ρν has units of (charge/sec)/m² $\partial \rho$ $\frac{\partial P}{\partial t} = -\nabla \cdot$ $\overline{}$ **J** We are trying to come up with a "conservation of energy" expression: ∂ (energy density) $\frac{\partial f}{\partial t} = -\nabla \cdot$ \overline{a} **S** What exactly is "energy density" here? (Whose energy?)

Local conservation of electric charged is expressed mathematically by: $\mathbf{F} = \mathbf{V} \cdot \mathbf{J}$ where J = ρν has units of (charge/sec)/m² $\partial \rho$ $\frac{\partial P}{\partial t} = -\nabla \cdot$ \overline{a} **J** We are trying to come up with a "conservation of energy" expression: ∂ (energy density) $\frac{\partial}{\partial t}$ = $-\nabla$. \rightarrow **S** What exactly is "energy density" here? (Whose energy?)

$$
\frac{\partial}{\partial t} u_q = -\frac{\partial}{\partial t} (\frac{\varepsilon_0}{2} E^2 + \frac{1}{2\mu_0} B^2) - \nabla \cdot \vec{S}
$$
 (Where **S**=**E** x **B** / μ_0)
How do you interpret this equation? In particular:
Does the – sign on the first term on the right seem OK?
A) Yup B) It's disconnecting, did we make a mistake? C) ??

$$
\frac{\partial}{\partial t} (u_q + \frac{\varepsilon_0}{2} E^2 + \frac{1}{2\mu_0} B^2) = -\nabla \cdot \vec{S}
$$

$$
\frac{\partial}{\partial t} (u_q + u_{EM}) = -\nabla \cdot \vec{S}
$$

$$
\frac{dW}{dt} = \pm \frac{dU_{EM}}{dt} - \oint \vec{S} \cdot d\vec{a}
$$

To make sense, should that term be A) $+$ or B) -? C) ???

The fields can change the total energies of charged particles by:

- A) Doing work on the particles
- B) Changing the potential energies only
- C) Changing the kinetic energies only
- D) Applying forces only perpendicular to the particle motion.
- E) None of the above.

Given a quantity with units of (Joules/ $m³$), you can convert it to a quantity with units of Joules/ $(m^2 * seconds)$ by multiplying by:

- A) a length
- B) a frequency
- C) a speed
- D) an acceleration
- E) None of the above

Given the E and B vectors, and perhaps some constants like permeability and permittivity of free space, can you construct a VECTOR with units of Joules/ $(m^2 * seconds)$?

A)We are working on it B)We have one!

How was the exam last night?

A)Too easy - exams should be a lot harder than that!

B) Fine/fair

C) Little hard (here and there), but I managed

D) Out of line/too hard no fair!

E)(No comment/none of the above/other comment!)

How was your "time allocated to 3320" spent this last week (exam but no homework) compared to usual?

I spent …..

A) MORE time

B) About the SAME time

C) LESS time

prepping for the midterm than I usually spend reading/doing homework for this course

D) No comment/none of the above/other comment!

I have read Chapter 8 material on Conservation Laws, the Poynting Vector, and the Maxwell Stress Tensor:

A) True, all of it

B) True, up to the tensor stuff

C) Just some of it…

D) Reading? During an exam week?

The momentum density (momentum/m³) of the electromagnetic field is:

- A) Not yet defined in this class.
- B) Not an individually conserved quantity.
- C) Not related to a vector momentum current density.
- D) All of the above
- E) None of the above

The fields can change the total momentum of charged particles by:

- A) Fields cannot change particle momentum
- B) Applying a net force to the particles
- C) Changing only the potential energy
- D) Only if they do net work on the particles.
- E) None of the above.

Given the E and B vectors, and perhaps some constants like permeability and permittivity of free space, can you construct a TENSOR that depends upon both E and B, and with units of Joules/m3 ?

A)We are working on it

B)We have one!

C) JUST KIDDING!

8.5a

Consider two point charges, each moving with constant velocity v, charge 1 along the $+x$ axis and charge 2 along the $+y$ axis. They are equidistant from the origin.

What is the direction of the magnetic force on charge 1 from charge 2? (You'll need to sketch this! Don't do it in your head!)

- $A. +x$
- $B. +v$
- $C. +z$
- D. More than one of the above
- E. None of the above

Conservation of energy looks like this:
$$
\frac{\partial}{\partial t}(u_q + u_{EM}) = -\nabla \cdot \vec{S}
$$

\nWhere $u_{EM} = \frac{\varepsilon_0}{2} E^2 + \frac{1}{2\mu_0} B^2$ and $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$
\nWith units of (energy/m³) and energy/m²/s respectively.
\nNow l'd like to find a "conservation of momentum" expression:
\n $\frac{\partial}{\partial t}(\vec{p}_q / volume + \vec{p}_{EM} / volume) = \nabla \cdot (something, called T)$

We seek a local conservation law that relates the time change in momentum density (units of momentum/m³), to the divergence of a current density, "T", with units of:

- A) Newtons/m2
- B) kg*m/(m^2 *second²)
- C) Joules/m3
- D) More than one of the above
- E) None of the above

We seek a local conservation law that relates the time rate of change in momentum density (momentum/m³), to the divergence of a current density, "T", with units of:

- A) Newtons/m2
- B) kg*m/(m^2 *second²)
- C) Joules/m3
- D) More than one of the above
- E) None of the above

$$
\frac{\partial}{\partial t}(\vec{p}_q / volume + \vec{p}_{EM} / volume) = \nabla \cdot (\mathbf{T})
$$

Working this out just as we did for energy, starting from
dp/dt = F (instead of dW = F.dI)
We find the momentum density is given by

$$
\vec{p}_{EM} / volume = \mu_0 \varepsilon_0 \vec{S}
$$

What units should a momentum density have? 8.6

A. N s/m3

- B. $J \, \text{s/m}^3$
- C. kg/(s m2)
- D. More than one of the above
- E. None of the above

 ∂ ∂t (\vec{p}_q / *volume* + \vec{p}_{em} / *volume*) = $\nabla \cdot (\text{T})$

 $\overline{1}$ \vec{p}_{EM} / $volume = \mu_0 \varepsilon_0$ \rightarrow **S**

But what kind of beast is T? (Vector, scalar, other?)

What units should a momentum flux density have? 8.7

A. N/m3

- B. N/m2
- C. kg/(s m)
- D. More than one of the above
- E. None of the above

where the contract of the cont

 \tilde{T} is the Maxwell stress tensor. It is a matrix: $T_{ij} = \varepsilon_0 (E_i E_j - \frac{1}{2} \delta_{ij} E^2) + \frac{1}{4}$ $\mu_{\scriptscriptstyle 0}$ $(B_i B_j - \frac{1}{2} \delta_{ij} B^2)$ T_{xx} *T_{xy}* T_{xz} T_{yx} *T_{yy} T_{yz}* T_{zx} *T*_{zy} *T*_{zz} ! \lfloor \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} $\overline{}$ \rfloor $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\frac{1}{2}$ The Poynting vector is $\mathbf{S} = (S_x, S_y, S_z)$ $\ddot{ }$ *T*

The Maxwell stress tensor is given by:

8.8

$$
T_{ij} = \varepsilon_0 (E_i E_j - \frac{1}{2} \delta_{ij} E^2) + \frac{1}{\mu_0} (B_i B_j - \frac{1}{2} \delta_{ij} B^2)
$$

What is the E field part of the T_{zx} term?

A.
$$
\epsilon_0(E_zE_x-\frac{1}{2}(E_x^2+E_z^2))
$$

\nB. $\epsilon_0(E_zE_x-\frac{1}{2}E_y^2)$
\nC. $\epsilon_0(E_zE_x-\frac{1}{2}(E_x^2+E_y^2+E_z^2))$
\nD. $\epsilon_0(E_zE_x)$
\nE. None of the above

 $\ddot{ }$ What is $\ddot{T} \cdot d\vec{A}$? T_{xx} *T_{xy} T_{xz}* T_{yx} *T_{yy} T_{yz}* T_{zx} *T_{zy}* T_{zz} ! $\mathsf L$ \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} $\overline{}$ $\overline{}$ & & & & *ax* a_{y} *az* ! $\overline{}$ \mathbf{r} L \mathbf{r} L $\overline{}$ $\mathsf I$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ = $T_{xx}a_x + T_{xy}a_y + T_{xz}a_z$ $T_{yx}a_x + T_{yy}a_y + T_{yz}a_z$ $T_{zx}a_x + T_{zy}a_y + T_{zz}a_z$! $\mathsf L$ \mathbf{r} L \mathbf{r} \mathbf{r} $\overline{}$ \lrcorner & & & & in general (\div T \rightarrow \vec{a})_{*i*} = $\sum T_{ij}a_j$ *j*=*x*,*y*,*z* \sum Similarly, (\rightarrow $\nabla \cdot$ \ddot{T} _{*j*} = $\sum \frac{\partial}{\partial y}$ ∂x_i $T^{}_{ij}$ $\sum_{i=x,y,z}$

$$
\frac{\partial}{\partial t}(\vec{p}_q / volume + \vec{p}_{EM} / volume) = \nabla \cdot (\mathbf{T})
$$

If we integrate both sides over volume,
what is the first term on left side?
Just \mathbf{F}_{mech} !

$$
\frac{\partial}{\partial t}(\vec{p}_q/volume + \vec{p}_{EM}/volume) = \nabla \cdot (\mathbf{T})
$$

If we integrate both sides over volume, using The left side is thus $\vec{p}_{\scriptscriptstyle EM}$ / volume = $\mu_0 \varepsilon_0$ \overline{a} **S**

$$
\mathbf{F}_{\text{mech}} + \varepsilon_0 \iiint \frac{\partial (\mathbf{E} \times \mathbf{B})}{\partial t} d\tau
$$

In static situations, this is still just the net physical force on our collection of charges. (That seems useful!)

If we integrate both sides over volume, what is the right side?

 \pm $T \cdot d$ \rightarrow $\oint T \cdot dA$ So, in static situations

$$
\vec{F}_{mech} = \oiint \vec{T} \cdot d\vec{A}
$$

Recall, T had units "force/area".

Hence, T is called a "stress tensor", This formula looks like $F =$ stress (or pressure) $*$ area

Given a general Maxwell Stress tensor with all elements non-zero, what is the net force on a small isolated area element *d***a** = (*dx dy)* **z** ? A. *Txz dx dy* **z** B. *Tyz dx dy* **z** C. *Txz dx dy* **z** D. (Txz **x** + Tyz **y** + Tzz **z)** dx dy E. Something else! 8.11 T_{xx} *T_{xy} T_{xz}* $T_{\rm yx}$ *T_{yy}* $T_{\rm yz}$ T_{zx} *T_{zy}* T_{zz} $\vec{F} = \iint \vec{T} \cdot d\vec{l}$ \rightarrow $\iint \widetilde{T} \cdot dA$

Conservation of angular momentum:

$$
\vec{l}_{EM} / volume = \vec{r} \times \vec{p}_{EM} / volume
$$

$$
= \mu_0 \varepsilon_0 \vec{r} \times \vec{S}
$$

$$
= \varepsilon_0 \vec{r} \times (\vec{E} \times \vec{B})
$$