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1.) Poynting Vector: Let’s revisit our familiar coax cable, now looking at fields constant in time. 
Like last week, the coax has a small central wire (a<<b) and a thin outer shell (c-b)<<b.   
Constant current I flows in the +z direction on the 
inner wire and total current I flows in the opposite 
direction in the outer shell. Assume that the coax 
cable (wire plus shell) is neutral, and neglect fringe 
fields.  Note there is a constant voltage difference V0 
between the wire and the shell. (see the figure)  
 

(a) Find E and B everywhere in space, in terms of only given quantities. Neglect fields in the metal, 
considering only fields in the “coax” region a<s<b. (Outside, for s>c, convince us E=B=0)  
Hints: This is not the same as the problem you did in HW6 last week! The magnetic part is 
essentially identical, but the electric part here is not solved via Faraday’s law like it was last week 
(B is not changing with time!) We’re back to Gauss’ law and the basic definition of voltage. You did 
a similar problem in “spherical geometry” way back on HW #2.)  
 

(b) Calculate the Poynting vector S everywhere. The magnitude of S gives the energy flux density 
and represents the power per area moving through space. Does its direction make sense for the coax? 
Integrate this flux through the cross sectional area of the coax to find the power transported down the 
coax line. (Be clear/careful about what your “dA” element is)  Does your answer make sense 
relative to the circuit maintaining the current and voltage? Briefly, comment!  
 

________________________________________________________________________ 
 

2.) More Poynting vectors, and conservation of energy: A capacitor with circular plates of radius 
R separated by distance d << R is being 
charged by a steady current I.  The plates 
are sufficiently close that fringe effects 
can be ignored. Assume that at t=0, the 
plate is uncharged. 
                            
(a) In class we did an activity to compute the magnitude of the B-field between the plates at all 
distances r from the center of the plates (r < R & r > R).  Reconstruct that argument (show us your 
work!) and then use it to compute the Poynting vector  


S  (magnitude and direction) on the rim of the 

capacitor, between the plates, at r = R. (The "rim" is the ribbon of area at r = R between the plates; 
see the diagram.) Express your answer in terms of given quantities only.  
 

(b) Compute the stored energy U in the capacitor as function of time (in terms of given quantities) 
Then show that the rate at which the capacitor's stored energy is increasing ( dU dt ) is equal to the 
rate at which field energy is entering through the rim:


S ⋅da

RIM
∫∫ .  

Comment on the sign conventions you used, and the basic physics – what is going on here?  
_______________________________________________________________________________ 
 

3.) Consider a very long solenoid of length L, radius R, and turns per length n. The current I in the 
solenoid is linearly ramped from I = 0 to I = I0 over a period t0 as 
shown in the graph. (Assume as usual the “quasistatic” 
approximation – the ramping is gentle) 

0 



	
  
 

(a) Integrate the magnetic field energy density to derive a formula for the total field energy stored in 
the solenoid at times t > t0. 
 

(b) Solve for the electric field everywhere in space at times 0 < t < t0. 
 

(c) Solve for the Poynting vector  

S  (direction and magnitude) at r = R (just inside the walls of the 

solenoid) as a function of time t. 
 

(d) Show that the total field energy/time passing through the walls of the solenoid into its interior, 
when integrated from t = 0 to t = t0, gives the same total energy as you computed in part (a)! 
______________________________________________________________________________ 
 
4.)  Consider the electric field E(x,y,z,t) = E0cos(k(x-ct)) ŷ   (where k  and c are known constants).  
(a) What is the charge density ρ(x,y,z,t) which this E field requires?  What are the units of k and c? 
 

(b) Come up with the simplest possible B field which satisfies Faraday’s law, given this E field. 
Then, CHECK that all the remaining free-space (meaning, no charges and no currents) Maxwell’s 
equations are satisfied, if you make the correct choice for the constant “c”.   
- What is this required “c”?   What is the magnitude of the B field?  
 

(c) What is the Poynting vector, S,  associated with these fields?  
- What is the energy density at any point (x,y,z, time t)? How is it related to |S|?  
- Describe in words what this E and B field look like. Can you “interpret” them physically? What 
does the constant “k” tell you?  
For you to think about:  does this set of E and B provide a valid, self-consistent, physically possible 
solution to Maxwell’s equations? What’s the physics here?  
__________________________________________________________________________ 
 

5.  Warmup for Ch 9, waves:  Two points on a string are observed as a traveling sinusoidal wave 
passes. The points are at x1 = 0 and x2 = 1 m.  The two points are known to be less than one 
wavelength apart. The transverse motions of the two points are observed to be 
 

 y1 = 0.2cos 3πt( )  
 y2 = 0.2cos 3π t −π 8( ) ,  where all numbers are in SI units. 
 

(a) What is the frequency of this wave in hertz? What is the wavelength? What is the wave speed? 
Can you tell if this wave is moving to the right or to the left?  If so, which way is it moving? 
 

(b) In general, for any complex plane wave 
 


E =

E0 exp i


k ⋅ r −ωt( )$% &' , (where  


E0  is a constant, 

independent of position and time, and k is also a given constant wave vector), prove that 

 

∇ ×

E = i


k ×

E .  

(Hint: 

r = (x, y, z) = xî + yĵ + zk̂ , right? And 


k = (kx,ky,kz ) = kxî + ky ĵ + kzk̂  is just a constant vector…) 

(After you’re done with the formal proof, stare at it and try to convince yourself that this is what you 
might write down “by inspection” if you had to take a guess, knowing how one takes derivatives of 
exponentials.  We’ll use this later in the term, see if you can “internalize” it so it looks obvious!?  
To test yourself – what do you think 


∇⋅

E  is here?)   

 
  



	
  
Extra Credit:  You have a choice between 2 extra credit options. (Credit only for one of them)  
 
The first is very similar to Q1. I would strongly suggest you do it if you feel like you’re not sure 
you fully understand the “big ideas” of that question, it will be a nice review.  
 
The second option is just for fun – do it if you want to learn the material we skipped in the 
latter part of Ch 8. It is not computationally very hard, but you will need to read a section of 
the book I didn’t require  (Note:  material on tensors is not needed for our exams!)_  
 
EC Option #1:  Revisit Q1 in a different geometry:  
Let’s investigate energy flow in a different type of coax cable. Again, we will only look at fields 
constant in time. This coax consists of two infinitely long flat parallel “ribbons” of width w and 
separation h, as shown. The width is much greater than the separation, w >>h.  One can assume 
therefore any piece of the coax looks like infinite plane capacitors or infinite planes of surface 
current. Similar to Q1a above, 
assume that a constant total 
current I flows in the +z 
direction on the upper ribbon 
and that total current I flows 
in the opposite direction on 
the lower ribbon. There is a constant voltage difference V0 between the upper and lower ribbons (as 
shown).  
- Find E and B everywhere between the ribbons. Again, the two-ribbon coax is neutral, and we 
neglect fringe fields. (This is just like Q1a, nothing fancy here, everything is “quasistatic”. Write 
your final E and B in terms of only given quantities)  
 
- Then, calculate the Poynting vector S inside the gap region.  As in Q1b, does its direction make 
sense? Integrate the flux of S through the cross sectional area of the coax to find power transported 
down the coax.  Does your answer make sense relative to the circuit maintaining the current and 
voltage? 
 
OR 
 
EC OPTION #2: Play with the stress tensor!  
Use Griffiths formulas for the stress tensor in section 8.2.2 and write out the full 3x3 stress tensor for 
the traveling wave of problem 4.  It’s surprisingly simple! Can you interpret the result physically? 
(Read the portion of Griffiths where he talks about “flow of momentum” as related to the stress 
tensor.)  

0 


