
Electromagnetic Waves in Conductors

Exercise 1: What is
√
i?

Help students show
√
i =
√
eiπ/2 = eiπ/4 = (1 + i)/

√
2.

Exercise 2: What about
√
a+ ib?

Help students walk through z2 = a + ib = re−θ with r =
√
a2 + b2 and

θ = tan−1(b/a), so z =
√
reiθ/2 =

√
r (cos(θ/2) + i sin(θ/2)). Use cos(θ/2) =√

1+cos(θ)
2 and sin(θ/2) =

√
1−cos(θ)

2 , and cos(θ) = a/r to give

√
a+ ib =

√
a

2
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Exercise 3: Have students write down Maxwell’s equations in media without
referring to the text or notes.

∇ ·D = ρf , (1a)

∇ ·B = 0, (1b)

∇×E +
∂B

∂t
= 0, (1c)

∇×H− ∂D

∂t
= Jf , (1d)

.

Exercise 4: Have students rewrite Maxwell’s equations assuming linear media
and Ohm’s law, where ε, µ, and σ are constant in space and time.

∇ ·E =
ρf
ε

(2a)

∇ ·B = 0, (2b)

∇×E +
∂B

∂t
= 0, (2c)

∇×B− µε∂E
∂t

= µσE, (2d)

.

Exercise 5: Have students do the charge conservation in metals: dynamics ex-
ercise.
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∇ · Jf = −∂ρf
∂t

,

∇ · Jf = ∇ · (σ E) = σ∇ · E =
σρf
ε

= −∂ρf
∂t

,

∂ρf
∂t

+
σ

ε
ρf = 0,

ρf (t) = ρf (0) exp

(
−σt
ε

)
= ρf (0) exp

(
− t
τ

)
,

where the quantity τ = ε/σ has units of time. Using values for metals σ ≈
107 (Ωm)−1 and ε ≈ 10−11 C2/Nm2, we get τ ≈ 10−18 s. Therefore the free
charge is very quickly eliminated from the inside of the conductor, leaving charge
on surface. (Don’t the excess free charges have to move all the way to the
surface? Shouldn’t the size of conductor enter? Walk through this. Note, this
time scale is a little extreme. The physics of electron motion sets this time scale
as the scattering time τs ≈ 10−16 s. The paper mentioned in the footnote in
text was written by Neil Ashby. )

Maxwell’s equations become

∇ ·E = 0 (3a)

∇ ·B = 0, (3b)

∇×E +
∂B

∂t
= 0, (3c)

∇×B− µε∂E
∂t

= µσE, (3d)

Have you seen something like these before? Yes, this is just wave equation in
a medium with v = 1/

√
µε, but with a new term µσE. Do these admit plane

wave solutions?

Exercise 6: Try the plane waves:

E = E0e
i(k·r−ωt) , B = B0e

i(k·r−ωt).

Have students rewrite Maxwell’s equations in terms of E0, B0, k, and ω.

ik ·E0 = 0 (4a)

ik ·B0 = 0, (4b)

ik×E0 − iωB0 = 0, (4c)

ik×B0 + iµεωE0 = µσE, (4d)

What can we infer about E0, B0, and k?
From (4a) and (4b) we see that k is perpendicular to both E0 and B0, i.e.
transverse waves.
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Exercise 7: Help students solve (4c) and (4d).
Starting with the easy one (equation (4c)) , we find B0 = 1

ωk×E0. This implies
that B0 is perpendicular to E0, just like in vacuum. Now substitute into (4d)
to get

i

ω
k× (k×E0) + iµεωE0 = µσE0.

Using a× (b× c) = (a · c)b− (a · b)c, we get

−ik2

ω
E0 + iµεωE0 = µσE0,

which gives

k2 = µεω2 + iµσω. (5)

Exercise 8: What are the consequences?
1. The wavevector k is complex, i.e. k = kI + ikR.
2. This gives exponentially decaying solutions for E and B with exponentials

of the form exp(−kIz) exp(i(kRz − ωt)). The length scale of the decay is called
the skin depth: d = 1/kI , and the phase velocity of the decaying waves becomes
ω/kR.

Since E0, B0 and k are mutually perpendicular, lets choose k along ẑ, E0 along
x̂ and B0 along ŷ. This gives

E = E0x̂ exp(−kIz) exp(i(kRz − ωt)), (6a)

B =
kR + ikI

ω
E0ŷ exp(−kIz) exp(i(kRz − ωt)). (6b)

From this, we can see that B is out of phase with E. We can solve equation (5)
for kR and kI in general, but lets stick to the case of good conductors at visible
frequencies and below. Rewriting equation (5) a little, k2 = µεω2 + iµεω σε , we
see that the second term on the right hand side dominates for visible frequencies
and below since σ/ε ≈ 1018 s−1, so the dispersion relation becomes k2 = iµωσ.
Have students solve this using Exercise 1. The solution is k =

√
µωσ(1 + i)/

√
2

so the real and imaginary parts are equal:

kR = kI =

√
µωσ

2
. (7)
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Putting in σ ≈ 107 (Ωm)−1, µ ≈ µ0 = 4π10−7 N/A2, and typical frequencies
for visible light (ω ≈ 1015 s−1), microwaves (ω ≈ 1010 s−1), and AC electrical
systems (ω = 2π(60) s−1), we get skin depths of dvisible ≈ 10 nm, dmicrowave ≈
4µm, and dAC ≈ 2 cm. Discuss applications: eclipse glasses, mirrors, half-
silvered mirrors, microwave cables, power line cables.

Exercise 9: We can see that B is out of phase with E, but by how much? For
good conductors

B0 =
kR
ω

(1 + i)E0 =
√
µωσE0e

iπ/4,

so the phase difference is π/4, but does the B-field lead or lag the E-field? Help
students walk through this. Sketch the E and B fields near boundary.

How does the magnitude of the B-field compare to the E-field?∣∣∣∣cB0

E0

∣∣∣∣ ≈ ckr
ω
≈
√
c2µεσ

εω
≈
√

σ

εω
� 1.

Therefore, the ratio of B to E is much larger than in the vacuum, and nearly
all of the energy density is in the B-field.
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