Maxwell-Ampere Part 1

A. The full Maxwell-Ampere Law in differential form is:

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Rewrite this equation in integral form using Stokes' theorem. Be sure to show each of your steps.

You may continue, but be sure to check your answer with an instructor.

B. Consider a capacitor in the process of charging up. The circular plates have radius R, area $A = \pi R^2$, and are so close together that fringe effects can be ignored. A current I is flowing in the long, straight wires.

Sketch the E-field between the capacitor plates in the diagram below, which shows the plates edge-on. Is this E-field changing with time?

Maxwell-Ampere Part 1

Consider the surface of an imaginary volume (dashed lines, at right) that partly encloses the left capacitor plate. For this closed surface, is the *total* flux of the current density **J** *positive*, *negative* or *zero*? Briefly explain

C. For each of the five points in the diagram above (labeled 1-5), fill out the table below to indicate whether the quantity in each row is *positive*, *negative* or *zero* at that point. Be sure your answers are consistent with charge being conserved.

	1	2	3	4	5
$\partial \rho / \partial t$					
$\nabla \cdot \mathbf{J}$					

Now, explain in words how your answers in each column are consistent with the conservation of charge.

Maxwell-Ampere Part 1

D. Suppose the original Ampere's law $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ were correct without any correction from Maxwell (it's not, but suppose for a moment that it is). What would this imply about $\nabla \cdot \mathbf{J}$ at points 2 and 4 in the diagram? [Hint: What is the divergence of the curl of a vector field equal to?] Are your answers consistent with your entries in the table on the previous page? (Conclusions?)

Still using the uncorrected Ampere's law $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$, fill out the table below to indicate whether $(\nabla \times \mathbf{B})_x$ is *positive*, *negative* or *zero* at points 1, 3 & 5.

	1	2	3	4	5
$(\nabla \times \mathbf{B})_{X}$					

Now, fill out the table below for points 1, 3 & 5 using the FULL Maxwell-Ampere Law (given on the first page) to indicate whether the quantities are *positive*, *negative* or *zero*.

	1	2	3	4	5
$J_{_{ m X}}$					
$\partial E_{\mathrm{X}}/\partial t$					
$(\nabla \times \mathbf{B})_{X}$					

Compare your answers for $\nabla \times \mathbf{B}$ in the two tables above (they *should* be inconsistent). Which set of answers is consistent with the equation $\nabla \cdot (\nabla \times \mathbf{B}) = 0$?