Review of Divergence and Stoke's Theorems

A. Begin by writing down the divergence theorem. Try to do this without referring to your notes!

The integral form of Gauss' law is:
$$\iint \vec{E} \cdot d\vec{a} = \frac{Q_{encl}}{\varepsilon_0}$$

Write down the relationship between $Q_{\mbox{\tiny encl}}$ and the charge density ho .

Use the divergence theorem to *derive* the differential form of Gauss' law from the integral form. Be sure to briefly explain each of your steps.

Review of Divergence and Stoke's Theorems

B. Now, write down Stokes' theorem (the "curl theorem"). Again, try to do this without referring to your notes.

The integral form of Ampere's law is: $\oint \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_0 I_{encl}$

Write down the relationship between $I_{\it encl}$ and the current density ${f J}$.

Use Stokes' theorem to *derive* the differential form of Ampere's law from the integral form. Be sure to briefly explain each of your steps.