# University of Colorado, Department of Physics PHYS3320, Spring 2016, HW 11 

due Fri, Apr 15 by 5:00pm, in the mailbox at the entrance to the physics helproom

1. [Total: 22 pts ]

Let the interface between two linear media be the $x$, $y$-plane ( $z=0$ ), and the incident electric wave be

$$
\tilde{\mathbf{E}}_{i n}(\mathbf{r}, t)=\tilde{E}_{0, i n} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)] \hat{\mathbf{y}}
$$

The propagation vector is $\mathbf{k}_{i n}=k_{i n} \sin \left(\theta_{i n}\right) \hat{\mathbf{x}}+k_{i n} \cos \left(\theta_{i n}\right) \hat{\mathbf{z}}$. Assume medium 1 has permittivity, permeability and index of refraction $\epsilon_{1}, \mu_{1}$ and $n_{1}$; those of medium 2 are $\epsilon_{2}, \mu_{2}$ and $n_{2}$. This is the case of polarization perpendicular to the plane of incidence; in lecture, we covered the different case of polarization lying in the plane of incidence.
a) $[8 \mathrm{pts}]$ Find the Fresnel equations for $\tilde{E}_{0, r}$ and $\tilde{E}_{0, t}$.
b) $[4 \mathrm{pts}]$ Sketch $\tilde{E}_{0, r} / \tilde{E}_{0, \text { in }}$ and $\tilde{E}_{0, t} / \tilde{E}_{0, \text { in }}$ as functions of $\theta_{\text {in }}$ for the case $\mu_{1} n_{2} / \mu_{2} n_{1}=$ 1.5 .
c) [4 pts] Compute the Fresnel equations for the case of normal incidence. Compare your results with those given in Griffiths, section 9.3.2.
d) [4 pts] Compute the reflection and transmission coefficients $R$ and $T$, and check that they add up to 1.
e) [2 pts] For this polarization case and with distinguishable media ( $\epsilon, \mu$ and $n$ are different for the two media), is there a Brewster's angle where the amplitude of the reflected wave is zero? If so, find an expression for the angle in terms of the media properties (e.g., $n_{1}, n_{2}$ ).
2. [9 pts total; 3 pts each part] Griffiths 9.20
3. [Total: 10 pts ]

Consider a point charge $q$ at rest at the origin. The scalar and vector potentials of this charge distribution are given by

$$
\begin{align*}
V(\mathbf{r}, t) & =\frac{q}{4 \pi \epsilon_{0} r}  \tag{1}\\
\mathbf{A}(\mathbf{r}, t) & =0 \tag{2}
\end{align*}
$$

a) [ 4 pts$]$ Check to see if we are in the Coulomb gauge, the Lorentz gauge, or perhaps, both, or maybe, neither.
b) $[6 \mathrm{pts}]$ Now introduce a gauge transformation $\mathbf{A}^{\prime}=\mathbf{A}+\nabla f$ and $V^{\prime}=V-\partial f / \partial t$ with

$$
\begin{equation*}
f(\mathbf{r}, t)=\frac{q t}{4 \pi \epsilon_{0} r} \tag{3}
\end{equation*}
$$

Calculate $\mathbf{A}^{\prime}$ and $V^{\prime}$. Briefly, discuss your results by considering

* Are these new potentials time-independent (static) or time-dependent?
* Do these potentials represent the same physical situation?
* Are we in the Coulomb gauge, or in the Lorentz gauge now?
* What is the $\mathbf{B}$-field based on the transformed potentials $V^{\prime}$ and $\mathbf{A}^{\prime}$ ?

4. [Total: 10 pts ]

Say the potentials throughout space and time are

$$
\begin{aligned}
V(\mathbf{r}, t) & =0 \\
\mathbf{A}(\mathbf{r}, t) & =A_{0} \cos [k(z-c t)] \hat{\mathbf{x}}
\end{aligned}
$$

where $A_{0}$ and $k$ are given constants, and $c$ is the speed of light.
a) [4 pts] Find the $\mathbf{E}$ and $\mathbf{B}$ fields everywhere in space and time, and comment on the physics here - what have we got going on?
b) [4 pts] Are we in the Coulomb gauge, the Lorentz gauge, both, or neither?
c) $[2 \mathrm{pts}]$ Is it possible, in principle, to find a different gauge for this problem (following the usual procedure for gauge transformations) in which $\mathbf{A}(\mathbf{r}, t)=0$ ? If your answer is yes, you do not necessarily need to find the particular gauge transformation. I am just asking if it is possible in principle, and how do you know.

